【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D
(1)求证:∠BCE=∠CAD;
(2)若AD=9cm,DE=5cm,求BE的长 .
【答案】(1)详见解析;(2)4cm.
【解析】
(1)求出∠E=∠ADC=∠ACB=90°,∠CAD=∠BCE,根据AAS推出即可;
(2)根据全等三角形的性质求出CE=AD=6cm,BE=CD,即可得出答案.
(1)证明:∵∠ACB=90°,BE⊥CE,AD⊥CE,
∴∠E=∠ADC=∠ACB=90°,
∴∠BCE+∠ACD=90°,∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
在△ADC和△CEB中
,
∴△ADC≌△CEB(AAS),
∴∠BCE=∠CAD;
(2)解:∵△ADC≌△CEB,AD=9cm,
∴CE=AD=9cm,BE=CD,
∵DE=5cm,
∴BE=CD=CE﹣DE=9cm﹣5cm=4cm.
故答案为4cm.
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC 中,∠A=90°,现要在 AC 边上确定一点 D,使点 D到 BA、BC 的距离相等.
(1)请你按照要求,在图上确定出点 D 的位置(尺规作图,不写作法,保留作图痕迹);
(2)若 BC=10,AB=8,则 AC= ,AD= (直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的有(____)
①DC′平分∠BDE;②BC长为;③△是等腰三角形;④△CED的周长等于BC的长.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,A、B、C三地依次在一直线上,两辆汽车甲、乙分别从A、B两地同时出发驶向C地,如图②,是两辆汽车行驶过程中到C地的距离s(km)与行驶时间t(h)的关系图象,其中折线段EF﹣FG是甲车的图象,线段OM是乙车的图象.
(1)图②中,a的值为 ;点M的坐标为 ;
(2)当甲车在乙车与B地的中点位置时,求行驶的时间t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于y轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直写出D、E、F的坐标.D、E、F点的坐标是:D( , ) E( , ) F( , );
(2)求四边形ABED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一种折叠式可调节的鱼竿支架的示意图,AE是地插,用来将支架固定在地面上,支架AB可绕A点前后转动,用来调节AB与地面的夹角,支架CD可绕AB上定点C前后转动,用来调节CD与AB的夹角,支架CD带有伸缩调节长度的伸缩功能,已知BC=60cm.
(1)若支架AB与地面的夹角∠BAF=35°,支架CD与钓鱼竿DB垂直,钓鱼竿DB与地面AF平行,则支架CD的长度为 cm(精确到0.1cm);(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如图2,保持(1)中支架AB与地面的夹角不变,调节支架CD与AB的夹角,使得∠DCB=85°,若要使钓鱼竿DB与地面AF仍然保持平行,则支架CD的长度应该调节为多少?(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形与中间的小正方形拼成的一个大正方形如果大正方形的面积是13,小正方形的面积是4,直角三角形的较短直角边为a,较长直角边为b,那么的值为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与两坐标轴分别交于,,三点,一次函数的图象与抛物线交于,两点.
求点,,的坐标;
当两函数的函数值都随着的增大而增大,求的取值范围;
当自变量满足什么范围时,一次函数值大于二次函数值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com