【题目】如图,已知E、F、G、H是四边形ABCD四边的中点,则四边形EFGH的形状为_____;如四边形ABCD的对角线AC 与BD的和为40,则四边形EFGH的周长为________.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于.
(1)求函数表达式;
(2)点是线段中点,点是上方抛物线上一动点,连接,.当的面积最大时,过点作轴垂线,垂足为,点为线段上一动点,将绕点顺时针方向旋转90°,点,,的对应点分别是,,,点从点出发,先沿适当的路径运动到点处,再沿运动到点处,最后沿适当的路径运动到点处停止.求面积的最大值及点经过的最短路径的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的.连接BE、CF相交于点D.
(1)求证:BE=CF.
(2)当四边形ACDE为菱形时,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,顶点为的抛物线:()经过点和轴上的点,,.
(1)求该抛物线的表达式;
(2)联结,求;
(3)将抛物线向上平移得到抛物线,抛物线与轴分别交于点(点在点的左侧),如果与相似,求所有符合条件的抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点P是AB下方的半圆上不与点A,B重合的一个动点,点C为AP的中点,连接CO并延长,交⊙O于点D,连接AD,过点D作⊙O的切线,交PB的延长线于点E,连接CE.
(1)求证:△DAC≌△ECP;
(2)填空:
①当∠DAP=______°时,四边形DEPC为正方形;
②在点 P的运动过程中,若⊙O的直径为10,tan∠DCE=,则AD=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李辉到服装专卖店去做社会调查,了解到商店为了激励营业员的工作积极性实行了“月总收入=基本工资+计件奖金”的方法,并获得了如下信息:
营业员 | 嘉琪 | 嘉善 |
月销售件数/件 | 400 | 300 |
月总收入/元 | 7800 | 6600 |
假设月销售件数为x件,月总收入为y元,销售每件奖励a元,营业员月基本工资为b元.
(1)求a、b的值.
(2)若营业员嘉善某月总收入不低于4200元,那么嘉善当月至少要卖多少件衣服?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交⊙O于点E.
(1)求证:PC与⊙O相切;
(2)求证:PC=PF;
(3)若AC=8,tan∠ABC=,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.
(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;
(2)求小明的综合得分是多少?
(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com