【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交⊙O于点E.
(1)求证:PC与⊙O相切;
(2)求证:PC=PF;
(3)若AC=8,tan∠ABC=,求线段BE的长.
【答案】(1)见解析;(2)见解析;(3)BE=5.
【解析】
(1)连接OC,根据角平分线的定义、等腰三角形的性质得到∠DAC=∠OCA,得到OC∥AD,根据平行线的性质得到OC⊥PD,根据切线的判定定理证明结论;
(2)根据圆周角定理、三角形的外角的性质证明∠PFC=∠PCF,根据等腰三角形的判定定理证明;
(3)连接AE,根据正切的定义求出BC,根据勾股定理求出AB,根据等腰直角三角形的性质计算即可.
(1)证明:连接OC,
∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵OA=OC,
∴∠OCA=∠CAB,
∴∠DAC=∠OCA,
∴OC∥AD,又AD⊥PD,
∴OC⊥PD,
∴PC与⊙O相切;
(2)证明:∵CE平分∠ACB,
∴∠ACE=∠BCE,
∴,
∴∠ABE=∠ECB,
∵OC=OB,
∴∠OCB=∠OBC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°,
∵∠BCP+∠OCB=90°,
∴∠BCP=∠BAC,
∵∠BAC=∠BEC,
∴∠BCP=∠BEC,
∵∠PFC=∠BEC+∠ABE,∠PCF=∠ECB+∠BCP,
∴∠PFC=∠PCF,
∴PC=PF;
(3)解:连接AE,
在Rt△ACB中,tan∠ABC=,AC=8,
∴BC=6,
由勾股定理得,AB=,
∵,
∴AE=BE,
则△AEB为等腰直角三角形,
∴BE=AB=5.
科目:初中数学 来源: 题型:
【题目】某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天销售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;
(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x+1交于点A(2,m).
(1)求k、m的值;
(2)已知点P(n,0),过点P作平行于 y 轴的直线,交直线y=x+1于点B,交函数y=(x>0)的图象于点C.若y=(x>0)的图象在点A、C之间的部分与线段AB、BC所围成的区域内(不包括边界),记作图形G.横、纵坐标都是整数的点叫做整点.
①当n=4时,直接写出图形G的整点坐标;
②若图形G 恰有2 个整点,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图中实线所示,函数y=|a(x﹣1)2﹣1|的图象经过原点,小明同学研究得出下面结论:
①a=1;②若函数y随x的增大而减小,则x的取值范围一定是x<0;
③若方程|a(x﹣1)2﹣1|=k有两个实数解,则k的取值范围是k>1;
④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函数图象的四个不同点,且m1<m2<m3<m4,则有m2+m3﹣m1=m4.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.
(1)求抛物线的解析式.
(2)如图,直线BC下方的抛物线上有一点D,过点D作DE⊥BC于点E,作DF平行x轴交直线BC于点F,求△DEF周长的最大值.
(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线对称轴的右侧,是否存在以点P,M,N,Q为顶点且以PM为边的正方形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一款落地灯的灯柱垂直于水平地面,高度为1.6米,支架部分的形状为开口向下的抛物线,其顶点距灯柱的水平距离为0.8米,距地面的高度为2.4米,灯罩距灯柱的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.
求、之间的路程;
请判断此出租车是否超过了城南大道每小时千米的限制速度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=( )
A.25°B.30°C.40°D.60°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com