【题目】如图所示,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.
(1)求抛物线的解析式.
(2)如图,直线BC下方的抛物线上有一点D,过点D作DE⊥BC于点E,作DF平行x轴交直线BC于点F,求△DEF周长的最大值.
(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线对称轴的右侧,是否存在以点P,M,N,Q为顶点且以PM为边的正方形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
【答案】(1);(2)△DEF周长的最大值为;(3)点P的横坐标为2或.
【解析】
(1)把A,B两点代入求出解析式即可;
(2)由等腰直角三角形的性质可得,可得△DEF周长=DE+EF+DF=,设点D的坐标为,则点F的坐标为:,求出最大值即可;
(3)分两种情况讨论,由正方形的性质和全等三角形的性质可求解.
解:(1)∵物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点,
∴
解得:,
∴解析式为:;
(2)∵抛物线与y轴交于点C,
∴点C坐标为(0,-3),
∴直线BC解析式为:y=x-3,
∵点B(3,0),点C(0,-3),
∴OB=OC=3,
∴∠OBC=∠OCB=45°,
∵DF∥AB,
∴∠EFD=45°=∠OBC,
∵DE⊥BC,
∴∠EFD=∠EDF=45°,
∴DE=EF,
∴
∴
∴△DEF周长=DE+EF+DF=
设点D的坐标为,则点F的坐标为:,
∴DF=,
∴当时,DF有最大值为,
∴△DEF周长=;
(3)存在,
如图1,过点M作GH⊥OC,过点P作PH⊥GH,连接MN,PM,
∵抛物线的解析式为,
∴点M(1,4),
∵以点P、M、N、Q为顶点且以PM为边的正方形,
∴PM=MN,∠PMN=90°,
∴∠PMH+∠NMG=90°,且∠PMH+∠MPH=90°,
∴∠NMG=∠MPH,且MN=PM,∠H=∠NGM=90°,
∴△MNG≌△PMH(AAS),
∴GM=PH=1,
∴点P的纵坐标为-3,
∴,
∴x=0(不合题意舍去),x=2,
∴点P的横坐标为2,
如图2,过点P作GH⊥AB,过点N作NG⊥GH,过点M作MH⊥GH,
∴△NGP≌△PHM,
可得NG=PH,GP=MH,
设点P横坐标为m,(m>1)
∴NG=PH=m,
∴点P纵坐标为-4+m,
∴,
∴或(舍去),
综上所述:点P的横坐标为2或.
科目:初中数学 来源: 题型:
【题目】如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有( )
(1)若通话时间少于120分,则A方案比B方案便宜20元;
(2)若通话时间超过200分,则B方案比A方案便宜12元;
(3)若通讯费用为60元,则B方案比A方案的通话时间多;
(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③AE2=ADAF;④AF=AB+CF.其中正确结论为是______.(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(0,1).
(1)画出△ABC向右平移3个单位长度所得的△A1B1C1;写出C1点的坐标;
(2)画出将△ABC绕点B按逆时针方向旋转90°所得的△A2B2C2;写出C2点的坐标;
(3)在(2)的条件下求点A所经过路径的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交⊙O于点E.
(1)求证:PC与⊙O相切;
(2)求证:PC=PF;
(3)若AC=8,tan∠ABC=,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七年级计划成立学生社团,要求每一位学生都选择一个社团而且只能选择一个社团.为了解学生对不同社团的选择意向,随机抽取了七年级部分学生进行“我最喜爱的社团”问卷调查,并将调查结果绘制成如下两个不完整的统计图表.
七年级部分学生“我最喜爱的社团”调查结果统计表
社团名称 | 人数 |
文学社团 | 4 |
创客社团 | 9 |
书法社团 | |
绘画社团 | 6 |
体育社团 | 10 |
音乐社团 | 5 |
美食社团 | |
数学社团 | 2 |
七年级部分学生“我最喜爱的社团”调查结果扇形统计图
请解答下列问题:
(1)______,______.
(2)在扇形统计图中,“绘画社团”所对应的扇形圆心角为______度.
(3)该校七年级共有350名学生,每个社团人数不低于30人才可以开展.试通过计算估计该校七年级有哪些社团可以开展.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课外阅读是提高学生素养的重要途径.某中学为了了解全校学生课外阅读情况,随机抽查了200名学生,统计他们平均每天课外阅读时间(小时).根据每天课外阅读时间的长短分为A,B,C.D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:
200名学生平均每天课外阅读时间统计表
类别 | 时间t(小时) | 人数 |
A | t<0.5 | 40 |
B | 0.5≤t<1 | 80 |
C | 1≤t<1.5 | 60 |
D | t≥1.5 | a |
(1)求表格中a的值,并在图中补全条形统计图:
(2)该校现有1800名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?
(3)请你根据上述信息对该校提出相应的建议
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com