【题目】如图,在平面直角坐标系中,顶点为的抛物线:()经过点和轴上的点,,.
(1)求该抛物线的表达式;
(2)联结,求;
(3)将抛物线向上平移得到抛物线,抛物线与轴分别交于点(点在点的左侧),如果与相似,求所有符合条件的抛物线的表达式.
【答案】(1);(2);(3)抛物线为:或.
【解析】
(1)根据题意,可以写出点B和点A的坐标,从而可以得到该抛物线的表达式;
(2)根据(1)中的函数解析式,可以求得点M的坐标,从而可以求得直线AM的函数解析式,从而可以求得S△AOM;
(3)根据题意,利用分类讨论的方法和三角形相似的知识可以求得点F的坐标,从而可以求得抛物线C2的表达式.
解:(1)过作轴,垂足为,
∵,∴
∵
∴,.
∵,
∴.
在中,,
∴.
∴
∵抛物线:经过点,
∴可得:,
解得:
∴这条抛物线的表达式为;
(2)过作轴,垂足为,
∵=
∴顶点是,得
设直线AM为y=kx+b,
把,代入得,解得
∴直线为
令y=0,解得x=
∴直线与轴的交点为
∴
(3)∵、,
∴在中,,
∴.
∴.由抛物线的轴对称性得:,
∴.
∵,
∴
∴.
∴当与相似时,有:或
即或,
∴或.
∴或
设向上平移后的抛物线为:,
当时,,
∴抛物线为:
当时,,
∴抛物线为:.
综上:抛物线为:或.
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GEGD.
(1)求证:∠ACF=∠ABD;
(2)连接EF,求证:EFCG=EGCB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,正方形中,、分别是、边长的点,与交于点,.求证:;
(2)如图2,矩形中,,、分别是、边上的点,与交于点,.求证:;
(3)如图3,若(2)种的四边形是平行四边形,且,则是否仍然成立?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,以A为圆心,弦AB为半径画弧交⊙O于点C,连结BC交AD于点E,若DE=3,BC=8,则⊙O的半径长为( )
A.B.5C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B点垂直起飞到高度为50米的A处,测得1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为_____米(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求m的值;
(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E、F、G、H是四边形ABCD四边的中点,则四边形EFGH的形状为_____;如四边形ABCD的对角线AC 与BD的和为40,则四边形EFGH的周长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.有下列结论:①MN=;②若MN与⊙O相切,则AM=;③若∠MON=90°,则MN与⊙O相切;④l1和l2的距离为2,其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.
(1)求此抛物线的表达式;
(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;
(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com