分析 (1)根据SAS即可判定△AED≌△ACD.
(2)结论:∠AED+∠EFC=180°,只要证明:EF∥BC得∠EFC+∠ACD=180°,由此即可证明.
解答 (1)证明:
∵AD是△ABC平分线,
∴∠DAE=∠DAC,
在△ADE和△ADC中,
$\left\{\begin{array}{l}{AD=AD}\\{∠DAE=∠DAC}\\{AE=AC}\end{array}\right.$,
∴△AED≌△ACD.
(2)结论:∠AED+∠EFC=180°,理由如下,
解:∵△AED≌△ACD,
∴∠AED=∠ACD,DE=DC,
∴∠DEC=∠ECD,
∵∠DEC=∠CEF,
∴∠DE=∠FEC,
∴EF∥BC,
∴∠EFC+∠ACD=180°,
∴∠AED+∠EFC=180°.
点评 本题考查全等三角形的判定和性质、平行线的判定和性质,解题关键是利用全等三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x<2 | B. | x>2 | C. | x>1 | D. | x<1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com