【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.
【答案】解:(Ⅰ)由 ,得 , 化成直角坐标方程,得 ,即直线l的方程为x﹣y+4=0.
依题意,设P(2cost,2sint),则P到直线l的距离 ,
当 ,即 时, .
故点P到直线l的距离的最小值为 .
(Ⅱ)∵曲线C上的所有点均在直线l的右下方,∴对t∈R,有acost﹣2sint+4>0恒成立,
即 (其中 )恒成立,∴ ,又a>0,解得 ,
故a的取值范围为
【解析】(Ⅰ)求出直线的普通方程,设P(2cost,2sint),则P到直线l的距离 ,即可求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,则对t∈R,有acost﹣2sint+4>0恒成立,即 (其中 )恒成立,即可求a的取值范围.
科目:初中数学 来源: 题型:
【题目】为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.
(1)求∠APB的度数;
(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,
(1)将抛物线沿y轴向下平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值范围是.
(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(﹣2,﹣4)且倾斜角为 的直线l与曲线C相交于A,B两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|AP||BP|=|BA|2 , 求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t | [0,15) | [15,30) | [30,45) | [45,60) | [60,75) | [75,90) |
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动. (i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图(2)).
(Ⅰ)求证:PB⊥DE;
(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E为AD的中点,异面直线AP与CD所成的角为90°.
(Ⅰ)证明:△PBE是直角三角形;
(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求二面角A﹣PE﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com