【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(﹣2,﹣4)且倾斜角为 的直线l与曲线C相交于A,B两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|AP||BP|=|BA|2 , 求m的值.
【答案】
(1)解:曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),即ρ2sin2θ=mρcosθ(m>0),可得直角坐标方程:
y2=mx(m>0).
过点P(﹣2,﹣4)且倾斜角为 的直线l参数方程为: (t为参数).
消去参数化为普通方程:y=x﹣2.
(2)把直线l的方程代入曲线C的方程为:t2﹣ (m+8)t+4(m+8)=0.
则t1+t2= (m+8),t1t2=4(m+8).
∵|AP||BP|=|BA|2,∴|t1t2|= ,化为:5t1t2= ,
∴20(m+8)=2(m+8)2,m>0,解得m=2.
【解析】(1)曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),即ρ2sin2θ=mρcosθ(m>0),利用互化公式可得直角坐标方程.过点P(﹣2,﹣4)且倾斜角为 的直线l参数方程为: (t为参数).相减消去参数化为普通方程.(2)把直线l的方程代入曲线C的方程为:t2﹣ (m+8)t+4(m+8)=0.由于|AP||BP|=|BA|2 , 可得|t1t2|= ,化为:5t1t2= ,利用根与系数的关系即可得出.
科目:初中数学 来源: 题型:
【题目】如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视。“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位。请你根据下表所提供的信息,判断下列各组换算不正确的是( )
千帕kpa | 10 | 12 | 16 | … |
毫米汞柱mmHg | 75 | 90 | 120 | … |
A.18kpa=135mmHg
B.21kpa=150mmHg
C.8kpa=60mmHg
D.32kpa=240mmHg
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D作DE//BC,交AC于点E.现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.
(1)①求证:△ABD∽△ACE;
②若CD=1,BD= ,求AD的长;
(2)如图3,将原题中的条件“AC=BC”去掉,其它条件
不变,设 ,若CD=1,BD=2,AD=3,求k的值;
(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若 ,设CD=m , BD=n , AD=p , 试探究m , n , p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数列{an}满足a1=3,an+1= .
(1)证明:数列 是等差数列,并求{an}的通项公式;
(2)令bn=a1a2…an , 求数列 的前n项和Sn .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名维修工人进行维修,每台机器出现故障需要维修的概率为 . (Ⅰ)若出现故障的机器台数为x,求x的分布列;
(Ⅱ)该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?
(Ⅲ)已知一名维修工人每月只有维修1台机器的能力,每月需支付给每位维修工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名维修工人,求该厂每月获利的均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com