【题目】已知数列{an}满足a1=3,an+1= .
(1)证明:数列 是等差数列,并求{an}的通项公式;
(2)令bn=a1a2…an , 求数列 的前n项和Sn .
【答案】
(1)∵an+1= ,
∴an+1﹣1= ﹣1= ,
∴ = = + ,
∴ ﹣ = ,
∵a1=3,
∴ = ,
∴数列 是以 为首项,以 为公差的等差数列,
∴ = + (n﹣1)= n,
∴an=
(2)∵bn=a1a2…an,
∴bn= × × ×…× × × = ,
∴ = =2( ﹣ ),
∴数列 的前n项和Sn=2( ﹣ + ﹣ +…+ ﹣ )=2( ﹣ )=
【解析】(1)根据数列的递推公式公式可得数列 是以 为首项,以 为公差的等差数列,即可求出{an}的通项公式,(2)利用累乘法得到bn , 再裂项求和即可得到数列 的前n项和Sn .
【考点精析】掌握等差数列的通项公式(及其变式)和等差关系的确定是解答本题的根本,需要知道通项公式:或;如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即-=d ,(n≥2,n∈N)那么这个数列就叫做等差数列.
科目:初中数学 来源: 题型:
【题目】小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是( )
A.(﹣2,1)
B.(﹣1,1)
C.(1,﹣2)
D.(﹣1,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.
请问:
(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?
(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,
(1)将抛物线沿y轴向下平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值范围是.
(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知命题p,x∈R都有2x<3x , 命题q:x0∈R,使得 ,则下列复合命题正确的是( )
A.p∧q
B.¬p∧q
C.p∧¬q
D.(¬p)∧(¬q)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(﹣2,﹣4)且倾斜角为 的直线l与曲线C相交于A,B两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|AP||BP|=|BA|2 , 求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知集合A={x∈N|x<3},B={x|x=a﹣b,a∈A,b∈A},则A∩B=( )
A.{1,2}
B.{﹣2,﹣1,0,1,2}
C.{1}
D.{0,1,2}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com