8£®ÒÑÖªÅ×ÎïÏßy=ax2+2x+cÓëxÖá½»ÓÚA£¨1£¬0£©ºÍµãB£¬ÓëyÖá½»ÓÚµãC£¨0£¬-3£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©Èçͼ1£¬ÒÑÖªµãHµÄ×ø±êΪ£¨0£¬1£©£¬ÉèµãMΪyÖá×ó²àÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬ÊÔ²ÂÏ룺ÊÇ·ñ´æÔÚÕâÑùµÄµãM£¬Ê¹|MA-MH|µÄÖµ×î´ó£¬Èç¹û´æÔÚ£¬ÇëÇó³öµãMµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬¹ýxÖáÉϵãE£¨-2£¬0£©×÷ED¡ÍAB½»Å×ÎïÏßÓÚµãD£¬ÔÚyÖáÉÏÕÒÒ»µãF£¬Ê¹¡÷EDFµÄÖܳ¤×îС£¬Çó³ö´ËʱµãFµÄ×ø±ê£»
£¨4£©Èçͼ3£¬ÒÑÖªµãN£¨0£¬-1£©£®ÎÊÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¨µãQÔÚyÖáµÄ×ó²à£©£¬Ê¹µÃ¡÷QNCµÄÃæ»ýÓë¡÷QNAµÄÃæ»ýÏàµÈ£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÅ×ÎïÏßy=x2+bx+cÓëxÖá½»ÓÚµãA£¨1£¬0£©ºÍµãB£¬ÓëyÖá½»ÓÚµãC£¨0£¬-3£©£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃ¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©×÷Ö±ÏßAH£¬ÓëÅ×ÎïÏߵĽ»µãM¼´ÎªËùÇó£»´Ëʱ|MA-MH|µÄÖµ×î´ó£¬¸ù¾Ý´ý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßAHµÄ½âÎöʽ£¬È»ºóºÍÅ×ÎïÏß½âÎöʽÁªÁ¢·½³Ì£¬½â·½³Ì¼´¿ÉÇóµÃMµãµÄ×ø±ê£»
£¨3£©ÕÒ³öEµã¹ØÓÚyÖáµÄ¶Ô³ÆµãE¡ä£¨2£¬0£©£¬Á¬½ÓDE¡ä½»yÖáÓÚF£¬´Ëʱ£¬EF+DF=E¡äF+DF=E¡äD£¬¸ù¾ÝDEÊǶ¨Öµ£¬ËùÒÔ´Ëʱ¡÷EDFµÄÖܳ¤×îС£¬¸ù¾Ý´ý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßDE¡äµÄ½âÎöʽ£¬È»ºóÁîx=0£¬¼´¿ÉÇóµÃFµÄ×ø±ê£»
£¨4£©·Ö±ð´ÓQN¡ÎACÓëQNÓëAC²»Æ½ÐÐÈ¥·ÖÎö£¬×¢ÒâÏÈÇóµÃÖ±ÏßQNµÄ½âÎöʽ£¬¸ù¾Ý½»µãÎÊÌâ¼´¿ÉÇóµÃ´ð°¸£¬Ð¡ÐIJ»ÒªÂ©½â£»

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£º$\left\{\begin{array}{l}{a+2+c=0}\\{c=-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=1}\\{c=-3}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=x2+2x-3£»

£¨2£©´æÔÚ£¬
Èçͼ1£¬×÷Ö±ÏßAH£¬ÓëÅ×ÎïÏߵĽ»µãM¼´ÎªËùÇó£»´Ëʱ|MA-MH|µÄÖµ×î´ó£¬
ÉèÖ±ÏßAHµÄ½âÎöʽΪy=kx+b£¬
¡à$\left\{\begin{array}{l}{k+b=0}\\{b=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=1}\end{array}\right.$£¬
¡àÖ±ÏßAHµÄ½âÎöʽΪy=-x+1£¬
½â$\left\{\begin{array}{l}{y=-x+1}\\{y={x}^{2}+2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-4}\\{y=5}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$£¬
¡ßµãMÔÚyÖá×ó²à£¬
¡àM£¨-4£¬5£©£»
£¨3£©Èçͼ2£¬ÕÒ³öEµã¹ØÓÚyÖáµÄ¶Ô³ÆµãE¡ä£¨2£¬0£©£¬
Á¬½ÓDE¡ä½»yÖáÓÚF£¬´Ëʱ£¬EF+DF=E¡äF+DF=E¡äD£¬
¡ßµãE£¨-2£¬0£©£¬ED¡ÍAB½»Å×ÎïÏßÓÚµãD£¬
¡àDµÄºá×ø±êΪ-2£¬´úÈëy=x2+2x-3µÃy=4-4-3=-3£¬
¡àD£¨-2£¬-3£©£¬
¡àDE=3ÊǶ¨Öµ£¬
¡à´Ëʱ¡÷EDFµÄÖܳ¤×îС£¬
ÉèÖ±ÏßDE¡äµÄ½âÎöʽΪy=mx+n£¬
¡à$\left\{\begin{array}{l}{-2m+n=-3}\\{2m+n=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{3}{4}}\\{n=-\frac{3}{2}}\end{array}\right.$£¬
¡ày=$\frac{3}{4}$x-$\frac{3}{2}$£¬
Áîx=0£¬Ôòy=-$\frac{3}{2}$£¬
¡àF£¨0£¬-$\frac{3}{2}$£©£»
£¨4£©´æÔÚ£»
Èçͼ¢Ù£¬µ±QN¡ÎACʱ£¬µãA£¬µãCµ½QNµÄ¾àÀëÏàµÈ£¬
¡àS¡÷QNC=S¡÷QNA£¬
¡ßA£¨1£¬0£©£¬C£¨0£¬-3£©£®
¡àACµÄ½âÎöʽΪy=3x-3£¬
¡ßQN¡ÎAC£¬N£¨0£¬-1£©£¬
¡àQNµÄ½âÎöʽΪy=3x-1£¬
½â$\left\{\begin{array}{l}{y=3x-1}\\{y={x}^{2}+2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-1}\\{y=-4}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$£¬
¡àQ£¨-1£¬-4£©£»
Èçͼ¢Ú£¬µ±QNÓëAC²»Æ½ÐÐʱ£¬
¡ßµãA£¬Cµ½Ö±ÏßQNµÄ¾àÀëÏàµÈ£¬
¡àÖ±ÏßQN¹ýÏß¶ÎACµÄÖеãM£¨$\frac{1}{2}$£¬-$\frac{3}{2}$£©£®
¡àÖ±ÏßQNµÄ½âÎöʽΪy=-x-1£¬
½â$\left\{\begin{array}{l}{y=-x-1}\\{y={x}^{2}+2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{-3+\sqrt{17}}{2}}\\{y=\frac{1-\sqrt{17}}{2}}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=\frac{-3-\sqrt{17}}{2}}\\{y=\frac{1-\sqrt{17}}{2}}\end{array}\right.$£¬
¡àQ£¨-$\frac{3+\sqrt{17}}{2}$£¬$\frac{1+\sqrt{17}}{2}$£©£¬
¡à´æÔÚµãQ£¨-$\frac{3+\sqrt{17}}{2}$£¬$\frac{1+\sqrt{17}}{2}$£©»ò£¨-1£¬-4£©£®

µãÆÀ ´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬Ö±ÏßÓë¶þ´Îº¯ÊýµÄ½»µãÎÊÌâÒÔ¼°Èý½ÇÐÎÃæ»ýÎÊÌâµÄÇó½âµÈ֪ʶ£®´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇ×¢ÒâÊýÐνáºÏ˼Ïë¡¢·ÖÀàÌÖÂÛ˼ÏëÓë·½³Ì˼ÏëµÄÓ¦ÓÃ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èô×î¼ò¶þ´Î¸ùʽ$\root{x-1}{x+y}$Óë$\sqrt{4x-2y}$ÊÇͬÀà¶þ´Î¸ùʽ£¬Ôò$\frac{xy}{2}$=$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ð¡Ã÷¼Ç¼Á˰ë¸öÔµÄ×î¸ßÆøÎÂÈçÏÂ±í£º
 ×î¸ßÆøÎ£¨¡æ£© 2122 25 24 23 26 
 ÌìÊý 1
ÄÇôÕâ°ë¸öÔÂÿÌìµÄ×î¸ßÆøÎµÄÖÐλÊýÊÇ£¨¡¡¡¡£©
A£®22B£®23C£®23.5D£®24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£ºÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Íø¸ñÖÐÿһ¸öСÕý·½Ðεı߳¤Îª1¸öµ¥Î»³¤¶È£¬ÒÑÖª¡÷ABC£º
£¨1£©×÷³ö¡÷ABC¹ØÓÚµãO³ÉÖÐÐĶԳƵÄͼÐΡ÷A1B1C1£¬²¢Ð´³öµãB¶ÔÓ¦µãB1µÄ×ø±ê£»
£¨2£©×÷³ö°Ñ¡÷ABCÈÆµãAÄæÊ±ÕëÐýת90¡ãºóµÄͼÐΡ÷AB2C2£®Ð´³öµãC¶ÔÓ¦µãC2µÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¡°¶ËÎç½Ú¡±ÊÇÎÒ¹úµÄ´«Í³¼Ñ½Ú£¬Ãñ¼äÀúÀ´Óгԡ°ôÕ×Ó¡±µÄϰË×£¬ÎÒÊÐijʳƷ³§ÎªÁ˽âÊÐÃñ¶ÔÈ¥ÄêÏúÊÛÁ¿½ÏºÃµÄÈâÏÚôÕ¡¢¶¹É³ôÕ¡¢ºìÔæôÕ¡¢µ°»ÆÏÚôÕ£¨ÒÔÏ·ֱðÓÃA¡¢B¡¢C¡¢D±íʾÕâËÄÖÖ²»Í¬¿ÚζôÕ×ÓµÄϲ°®Çé¿ö£¬ÔÚ½Úǰ¶Ôij¾ÓÃñÇøÊÐÃñ½øÐÐÁ˳éÑùµ÷²é£¬²¢½«µ÷²é½á¹û»æÖƳÉÈçÏÂÁ½·ùͳ¼ÆÍ¼£®Çë¸ù¾ÝÒÔÉÏÐÅÏ¢»Ø´ð£º

£¨1£©±¾´Î²Î¼Ó³éÑùµ÷²éµÄ¾ÓÃñÓжàÉÙÈË£¿
£¨2£©½«²»ÍêÕûµÄÌõÐÎͼ²¹³äÍêÕû£®
£¨3£©Èô¾ÓÃñÇøÓÐ8000ÈË£¬Çë¹À¼Æ°®³ÔDôÕµÄÈËÊý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Å×ÎïÏßy=ax2+bx+cµÄͼÏóÈçͼËùʾ£¬ÔòʹµÃy£¾0µÄxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®x£¼2B£®x£¾-3C£®-3£¼x£¼1D£®x£¼-3»òx£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ê¹¶þ´Î·½³Ìx2-2px+p2-5p-1=0µÄÁ½¸ù¾ùΪÕûÊýµÄÖÊÊýpµÄËùÓпÉÄÜֵΪ3»ò7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Éèa£¬bÊÇÈÎÒâÁ½¸ö²»µÈʵÊý£¬ÎÒÃǹ涨£ºÂú×ã²»µÈʽa¡Üx¡ÜbµÄʵÊýxµÄËùÓÐȡֵµÄÈ«Ìå½Ð×ö±ÕÇø¼ä£¬±íʾΪ[a£¬b]£®¶ÔÓÚÈκÎÒ»¸ö¶þ´Îº¯Êý£¬ËüÔÚ¸ø¶¨µÄ±ÕÇø¼äÉ϶¼ÓÐ×îСֵ£®
£¨1£©º¯Êýy=-x2+4x-2ÔÚÇø¼ä[0£¬5]ÉϵÄ×îСֵÊÇ-7
£¨2£©Çóº¯Êý$y={£¨{x+\frac{1}{2}}£©^2}+\frac{3}{4}$ÔÚÇø¼ä$[{0£¬\frac{3}{2}}]$ÉϵÄ×îСֵ£®
£¨3£©Çóº¯Êýy=x2-4x-4ÔÚÇø¼ä[t-2£¬t-1]£¨tΪÈÎÒâʵÊý£©ÉϵÄ×îСֵyminµÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬ADƽ·Ö¡ÏCAB£¬BEƽ·Ö¡ÏCBA£¬AD¡¢BEÏཻÓÚµãO£¬Èô¡÷AOBµÄÃæ»ýΪS£¬ÔòËıßÐÎABDEµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®2SB£®1.5SC£®1.2SD£®1.8S

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸