【题目】(探索新知)
如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.
(1)一条线段的中点 这条线段的“二倍点”;(填“是”或“不是”)
(深入研究)
如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.
(2)问t为何值时,点M是线段AB的“二倍点”;
(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.
【答案】(1)是;(2)t为或5或时;(3)t为7.5或8或时
【解析】
(1)可直接根据“二倍点”的定义进行判断即可;
(2)用含t的代数式分别表示出线段AM、BM、AB,然后根据“二倍点”的意义,分类讨论即可得结果;
(3)用含t的代数式分别表示出线段AN、NM、AM,然后根据“二倍点”的意义,分类讨论即可.
(1)因为线段的中点把该线段分成相等的两部分,
该线段等于2倍的中点一侧的线段长,
所以一条线段的中点是这条线段的“二倍点”,
故答案为:是;
(2)当AM=2BM时,20﹣2t=2×2t,解得:t=;
当AB=2AM时,20=2×(20﹣2t),解得:t=5;
当BM=2AM时,2t=2×(20﹣2t),解得:t=;
答:t为或5或时,点M是线段AB的“二倍点”;
(3)当AN=2MN时,t=2[t﹣(20﹣2t)],解得:t=8;
当AM=2NM时,20﹣2t=2[t﹣(20﹣2t)],解得:t=7.5;
当MN=2AM时,t﹣(20﹣2t)=2(20﹣2t),解得:t=;
答:t为7.5或8或时,点M是线段AN的“二倍点”.
科目:初中数学 来源: 题型:
【题目】如图,在,,,垂足为,点是边上的一个动点,连接,过点作,交的延长线于点,连接交于点.
(1)请根据题意补全示意图;
(2)当与全等时,
①若,,,求的度数;
②试探究,,之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张师傅在铺瓷砖时发现,用8块大小一样的小长方形瓷砖恰好可以拼成一个大的长方形,如图①.然后,他用这8块瓷砖又拼出一个正方形,如图②,中间恰好空出一个边长为1的小正方形(阴影部分).
(1)请你根据图①写出小长方形的长与宽之比为 ;
(2)请你根据图②列出方程,求出小长方形的长与宽.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的三边为边在BC同侧分别作等边三角形,即△ABD,△BCE,△ACF.
(1)四边形ADEF为__________四边形;
(2)当△ABC满足条件____________时,四边形ADEF为矩形;
(3)当△ABC满足条件____________时,四边形ADEF为菱形;
(4)当△ABC满足条件____________时,四边形ADEF不存在.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】宇航员翟志刚在太空进行了19分35秒的舱外活动中,飞行了9 165 000 米,成为中国“飞得最高、走得最快”的人.将9 165 000 米保留两位有效数字用科学记数法记为( )米
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数y=kx+3的图象与反比例函数y= (x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B. 一次函数的图象分别交x轴、y轴于点C. 点D,且S△DBP=27,
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于a的方程的解也是关于x的方程=11的解.
(1)求a、b的值;
(2)若线段AB=a,在直线AB上取一点P,恰好使,点Q为AP的中点,求线段BQ的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com