【题目】如图,以△ABC的边BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点E.
(1)如图1,若∠ABC=90°,求证:OE∥AC;
(2)如图2,已知AB=AC,若sin∠ADE=, 求tanA的值.
【答案】(1)详见解析;(2)tan∠A=.
【解析】
(1)连结OD,如图1,先根据切线的性质得到∠ODE=90°,然后通过HL证明Rt△OBE≌Rt△ODE,得到∠1=∠2,利用三角形的外角性质得到∠2=∠C,再根据平行线的判定定理即可得证;
(2)连结OD,作OF⊥CD于F,DH⊥OC于H,如图2,易证∠A=∠COD,根据切线的性质与两角互余可得∠ADE=∠DOF,则在Rt△DOF中,sin∠DOF==,设DF=x,则OD=3x,然后用含x的式子表示相关线段的长,然后求得tanA的值即可.
解:(1)证明:连结OD,如图1,
∵DE为⊙O的切线,
∴OD⊥DE,
∴∠ODE=90°,
在Rt△OBE和Rt△ODE中,
,
∴Rt△OBE≌Rt△ODE,
∴∠1=∠2,
∵OC=OD,
∴∠3=∠C,
而∠1+∠2=∠C+∠3,
∴∠2=∠C,
∴OE∥AC;
(2)解:连结OD,作OF⊥CD于F,DH⊥OC于H,如图2,
∵AB=AC,OC=OD,
而∠ACB=∠OCD,
∴∠A=∠COD,
∵DE为⊙O的切线,
∴OD⊥DE,
∴∠ODE=90°,
∴∠ADE+∠ODF=90°,
而∠DOF+∠ODF=90°,
∴∠ADE=∠DOF,
∴sin∠DOF=sin∠ADE=,
在Rt△DOF中,sin∠DOF==,
设DF=x,则OD=3x,
∴OF==2x,DF=CF=x,OC=3x,
∵DHOC=OFCD,
∴DH==x,
在Rt△ODH中,OH==x,
∴tan∠DOH===,
∴tan∠A=.
科目:初中数学 来源: 题型:
【题目】(1) 如图,AD 是等腰△ABC 的中线,AB=AC.把△BDA 绕 B 点顺时针旋转α角度(0°<α<90°)得到△BEF,点 D 对应 E 点,点 A 对应 F 点,AF 与 DE 交于点 G。
① 求证:△BAF∽△BDE
② 求证:AG=FG
(2) 如图,AB 是⊙O 的一条运动的弦,以 AB 为边向圆外作正方形 ABCD.若⊙O 的半径为 2, 则 OC 的长的最大值是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣x﹣6的图象如图所示.
(1)求抛物线与x轴、y轴的交点坐标;
(2)根据图象回答:当x取何值时,y>0?当x取何值时,y<0?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点在抛物线()上,且,
(1)若,求,的值;
(2)若该抛物线与轴交于点,其对称轴与轴交于点,试求出,的数量关系;
(3)将该抛物线平移,平移后的抛物线仍经过,点的对应点,当时,求平移后抛物线的顶点所能达到的最高点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,二次函数 y=x2+2x+2k﹣2 的图象与 x 轴有两个交点.
(1)求 k 的取值范围;
(2)当 k 取正整数时,请你写出二次函数 y=x2+2x+2k﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列语句中,叙述正确的个数为( )
①相等的圆周角所对弧相等;
②同圆等圆中,同弦或等弦所对圆周角相等;
③平分弦的直径垂直于弦;
④等弧所对圆周角相等;
⑤圆的内接平行四边形是矩形;
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于半圆,AB是直径,过A作直线MN,若∠MAC=∠ABC.
(1)求证:MN是半圆的切线;
(2)设D是弧AC的中点,连结BD交AC 于G,过D作DE⊥AB于E,交AC于F.求证:FD=FG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com