【题目】如图,Q为正方形ABCD的CD边上一点,CQ=1,DQ=2,P为BC上一点,若PQ⊥AQ,则CP=_____.
![]()
【答案】![]()
【解析】
证明△ADQ∽△QCP:已知的条件有∠C=∠D=90°,那么只要得出另外两组对应角相等即可得出两三角形相似,因为∠DQA+∠CQP=180°-90°=90°,而∠DAQ+∠DQA=90°,因此∠CQP=∠DAQ,那么就构成了两三角形相似的条件;然后由相似三角形的对应边成比例、正方形的四条边都相等及已知条件CQ=1,DQ=2求解即可.
解:∵PQ⊥AQ,
∴∠DQA+∠CQP=180°-90°=90°;
又∵四边形ABCD是正方形,
∴∠DAQ+∠DQA=90°,
∴∠CQP=∠DAQ,
∴ADQ∽△QCP,
,
∵CQ=1,DQ=2,
∴AD=DC=3;
∴CP=
,
故答案为:
.
科目:初中数学 来源: 题型:
【题目】(1)如图①,
,射线
在这个角的内部,点
、
分别在
的边
、
上,且
,
于点
,
于点
.求证:
;
(2)如图②,点
、
分别在
的边
、
上,点
、
都在
内部的射线
上,
、
分别是
、
的外角.已知
,且
.求证:
;
(3)如图③,在
中,
,
.点
在边
上,
,点
、
在线段
上,
.若
的面积为15,求
与
的面积之和.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为等腰三角形ABC底边BC的中点,
,
,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为 1 的小正方形组成的网格中,有如图 所示的 A. B 两点,在格点中任 意放置点 C,恰好能使△ABC 的面积为 1,则这样的 C 点有 ( )个
![]()
A. 5 个B. 6 个C. 7 个D. 8 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为( )
![]()
A.(-1,0)B.(
,0)C.(
,0)D.(1,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com