【题目】如图,等边△中,于,,点、分别为、上的两个定点且,在上有一动点使最短,则的最小值为_____.
【答案】5
【解析】
作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小,最小值PE+PQ=PE+EQ′=PQ′;
解:如图,∵△ABC是等边三角形,
∴BA=BC,
∵BD⊥AC,
∴AD=DC=3.5cm,
作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,
∵AQ=2cm,AD=DC=3.5cm,
∴QD=DQ′=1.5cm,
∴CQ′=BP=2cm,
∴AP=AQ′=5cm,
∵∠A=60°,
∴△APQ′是等边三角形,
∴PQ′=PA=5cm,
∴PE+QE的最小值为:5cm.
故答案为:5.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,与轴交于点,顶点为,以为直径作D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线与轴,轴分别交于,两点,点从点出发,沿射线的方向运动,已知,点的横坐标为,连接,,记的面积为.
(1)求关于的函数关系式及的取值范围;
(2)在图2所示的平面直角坐标系中画出(1)中所得函数的图象,记其与轴的交点为,将该图象绕点逆时针旋转,画出旋转后的图象;
(3)结合函数图象,直接写出旋转前后的图象与直线的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某直销公司现有名推销员,月份每个人完成销售额(单位:万元),数据如下:
整理上面的数据得到如下统计表:
销售额 | ||||||||||
人数 |
(1)统计表中的 ; ;
(2)销售额的平均数是 ;众数是 ;中位数是 .
(3)月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:直线,点,分别是直线,上任意两点,在直线上取一点,使,连接,在直线上任取一点,作,交直线于点.
(1)如图1,若点是线段上任意一点,交于,求证:;
(2)如图2,点在线段的延长线上时,与互为补角,若,请判断线段与的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1, 和均为等边三角形,点在同一直线上,连接
①求证:; ②求的度数.
(2)拓展探究:如图2, 和均为等腰直角三角形,,点在同一直线上为中边上的高,连接
①求的度数:
②判断线段之间的数量关系(直接写出结果即可).
解决问题:如图3,和均为等腰三角形,,点在同一直线上,连接.求的度数(用含的代数式表示,直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( )
(A)33 (B)34 (C)35 (D)36
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c.
(Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
①求该抛物线的解析式;
②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
(Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com