【题目】如图,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD,BC分别交于点E,F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.
(1)求证:△DOK≌△BOG;
(2)探究线段AB、AK、BG三者之间的关系,并证明你的结论;
(3)若KD=KG,BC=2 ﹣1,求KD的长度.
【答案】
(1)证明:∵在矩形ABCD中,AD∥BC,
∴∠KDO=∠GBO,∠DKO=BGO.
∵点O是BD的中点;
∴DO=BO.
在△DOK和△BOG中,
∴△DOK≌△BOG(AAS).
(2)解:AB+AK=BG;证明如下:
∵四边形ABCD是矩形;
∴∠BAD=∠ABC=90°,AD∥BC.
又∵AF平分∠BAD,
∴∠BAF=∠BFA=45°.
∴AB=BF.
∵OK∥AF,AK∥FG,
∴四边形AFGK是平行四边形.
∴AK=FG.
∵BG=BF+FG;
∴BG=AB+AK.
(3)解:∵四边形AFGK是平行四边形.
∴AK=FG,AF=KG
又∵△DOK≌△BOG,且KD=KG,
∴AF=KG=KD=BG.
设AB=a,则AF=KG=KD=BG= a.
∴AK=2 ﹣1﹣ a,FG=BG﹣BF= a﹣a.
∴2 ﹣1﹣ a= a﹣a.
解得a=1.
∴KD= a= .
【解析】(1)在矩形ABCD中,AD∥BC,得到∠KDO=∠GBO,∠DKO=BGO,DO=BO,得到△DOK≌△BOG(AAS);(2)四边形ABCD是矩形,得到∠BAD=∠ABC=90°,AD∥BC,又AF平分∠BAD,得到∠BAF=∠BFA=45°,AB=BF,由OK∥AF,AK∥FG,得到四边形AFGK是平行四边形,得到AK=FG,BG=BF+FG,即BG=AB+AK;(3)四边形AFGK是平行四边形,得到AK=FG,AF=KG,又△DOK≌△BOG,且KD=KG,得到AF=KG=KD=BG,设AB=a,则AF=KG=KD=BG= a,得到AK=2﹣1- a,FG=BG﹣BF= a﹣a,解得a=1,得到KD= a= .
科目:初中数学 来源: 题型:
【题目】“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下列各组线段为边,能组成三角形的是( )
A. 2cm、2cm、4cmB. 2cm、6cm、3cm
C. 8cm、6cm、3cmD. 11cm、4cm、6cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km
),甲车行驶的时间为x(h),y甲 , y乙与x之间的函数图象如图所示,结合图象解答下列问题:
(1)当0<x<2时,求乙车的速度;
(2)求乙车与甲车相遇后y乙与x的关系式;
(3)当两车相距20km时,直接写出x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com