精英家教网 > 初中数学 > 题目详情

【题目】一次函数y=2x﹣1一定不经过第________象限.

【答案】

【解析】

k=2>0,b=1<0,

∴一次函数图象在一、三、四象限,即一次函数图象不经过第二象限.

故答案为:二

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知方程x2﹣6x+m2﹣2m+5=0的一个根为2,求另一个根 , m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市有12000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②每一名考生是个体;③样本容量是1000人.其中正确的说法有(  )

A. 0种 B. 1种 C. 2种 D. 3种

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黄鱼是中国特有的地方性类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为并把实验数据绘制成下列两幅统计图(部分信息未给出):

(1) 求实验中“宁港”品种鱼苗的数量;

(2) 求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;

(3)你认为应选哪一品种进行推广说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD,BC分别交于点E,F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.

(1)求证:△DOK≌△BOG;
(2)探究线段AB、AK、BG三者之间的关系,并证明你的结论;
(3)若KD=KG,BC=2 ﹣1,求KD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解关于x的方程:15x+9=8x-5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,抛物线轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果ABP的三边满足,则称点P为抛物线的勾股点。

(1)直接写出抛物线的勾股点的坐标;

(2)如图2,已知抛物线C:轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式;

(3)在(2)的条件下,点Q在抛物线C上,求满足条件的点Q(异于点P)的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程,操作步骤是:

第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;

第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);

第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.

(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);

(2)结合图1,请证明“第三步”操作得到的m就是方程的一个实数根;

(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程 (a0,0)的实数根,请你直接写出一对固定点的坐标;

(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?

查看答案和解析>>

同步练习册答案