精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.

(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.

【答案】
(1)证明:∵四边形ABCD是菱形,

∴AB∥CD,AC⊥BD,

∴AE∥CD,∠AOB=90°,

∵DE⊥BD,即∠EDB=90°,

∴∠AOB=∠EDB,

∴DE∥AC,

∴四边形ACDE是平行四边形


(2)解:∵四边形ABCD是菱形,AC=8,BD=6,

∴AO=4,DO=3,AD=CD=5,

∵四边形ACDE是平行四边形,

∴AE=CD=5,DE=AC=8,

∴△ADE的周长为AD+AE+DE=5+5+8=18


【解析】(1)菱形的对角线互相垂直,对边平行得出AB∥CD,AC⊥BD,再根据已知DE⊥BD,从而证得DE∥AC,即可得出结论。
(2)要求△ADE的周长,根据已知就需求AD的长,根据菱形的性质,对角线互相垂直平分,在Rt△AOD中运用勾股定理求出AD的长,即可求出△ADE的周长。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】,乙两人以相同路线前往距离单位10的培训中心参加学习.图中分别表示甲,乙两人前往目的地所走的路程s随时间()变化的函数图象.以下说法:乙比甲提前12分钟到达;甲的平均速度为15千米/小时;乙走了8后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般地,个相同的因数相乘,记为 ,此时,3叫做以2为底8的对数,记为 () .一般地,若 叫做以为底的对数, 记为 () .如 4叫做以3为底81的对数, 记为 ()

1)计算下列各对数的值:

2)观察(1)中三数41664之间满足怎样的关系式,之间又满足怎样的关系式;

3)由(2)的结果,你能归纳出一个一般性的结论吗?

4 根据幂的运算法则:以及对数的含义说明上述结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形是矩形,点在坐标轴上, 绕点顺时针旋转得到的,点轴上,直线轴于点,交于点,线段

1)求直线的解析式;

2)求的面积;

3)点轴上,平面内是否存在点,使以点为顶点的四边形是矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠Aα.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;∠A2019BC与∠A2019CD的平分线相交于点A2020,得∠A2020,则∠A2020_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AGCF.下列结论:

△ABG≌△AFG;② BG=GC;③ AG∥CF;④∠GAE=45°

则正确结论的个数有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,边长为3的正方形OABC的两顶点AC分别在y轴、x轴的正半轴上,点O在原点。现将正方形OABCO点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点MBC边交x轴于点N(如图).在旋转正方形OABC的过程中,△MBN的周长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.

(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;

(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;

(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名选手在同等条件下进行射击对抗赛,他们各射靶10次,为了比较两人的成绩,制作了如下统计图表:

甲、乙射击成绩统计表

平均数

众数

中位数

方差

10环次数

8

(1)请补全上述图表(请直接在表中填空和补全折线图)

(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;

(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?

查看答案和解析>>

同步练习册答案