【题目】在建设港珠澳大桥期间,大桥的规划选线须经过中华白海豚国家级自然保护区---区域A或区域B.为实现白海豚“零伤亡,不搬家”的目标,需合理安排施工时间和地点,为此,海豚观察员在相同条件下连续出海20天,在区域A,B两地对中华白海豚的踪迹进行了观测和统计,过程如下,请补充完整.(单位:头)
(收集数据)
连续20天观察不同中华白海豚每天在区域A,区域B出现的数目情况,得到统计结果,并按从小到大的顺序排列如下:
区域A 0 1 3 4 5 6 6 6 7 8 8 9 11 14 15 15 17 23 25 30
B 1 1 3 4 6 6 89 11 12 14 15 16 16 16 17 22 25 26 35
(整理、描述数据)
(1)按如下数段整理、描述这两组数据,请补充完整:
海豚数x | 0≤x≤7 | 8≤x≤14 | 15≤x≤21 | 22≤x≤28 | 29≤x≤35 |
区域A | 9 | 5 | 3 | ______ | ______ |
区域B | 6 | 5 | 5 | 3 | 1 |
(2)两组数据的极差、平均数、中位数,众数如下表所示
观测点 | 极差 | 平均数 | 中位数 | 众数 |
区域A | a | 10.65 | b | c |
区域B | 34 | 13.15 | 13 | 16 |
请填空:上表中,极差a=______,中位数b=______,众数c=______;
(3)规划者们选择了区域A为大桥的必经地,为减少施工对白海豚的影响,合理安排施工时间,估计在接下来的200天施工期内,区域A大约有多少天中华白海豚出现的数目在22≤x≤35的范围内?
【答案】(1)2,1;(2)30,8,6;(3)22≤x≤35.
【解析】
(1)根据题目中的数据,可以将表格补充完整;
(2)根据题目中的数据可以分别求得a、b、c的值;
(3)根据样本估计整体,集合表格中的数据可以求得区域A大约有多少天中华白海豚出现的数目在22≤x≤35的范围内.
解:(1)由收集数据中的数据可得,
22≤x≤28时,中华白海豚在区域A出现的数目为:2,
29≤x≤35时,中华白海豚在区域A出现的数目为:1,
故答案为:2,1;
(2)由收集数据中的数据可得,
a=30-0=30,b=8,c=6,
故答案为:30,8,6;
(3)200×=30(天),
答:区域A大约有30天中华白海豚出现的数目在22≤x≤35的范围内.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy内,函数y=的图象与反比例函数y=(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.
(1)求反比例函数的解析式;
(2)点P在线段OB上,若AP=BP+2,求线段OP的长;
(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为50000元,今年销售总额将比去年减少20%,每辆销售价比去年降低400元,若这两年卖出的数量相同.A,B两种型号车今年的进货和销售价格表:
A型车 | B型车 | |
进货价格(元) | 1100 | 1400 |
销售价格(元) | 今年的销售价格 | 2000 |
(1)求今年A型车每辆售价多少元?
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,求销售这批车获得的最大利润是多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标;
(2)求点M(x,y)在函数y=-x+1的图象上的概率;
(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将二次函数y=-(x-2)2+4(x≤4)的图象沿直线x=4翻折,翻折前后的图象组成一个新图象M,若直线y=b和图象M有四个交点,结合图象可知,b的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CE是ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四边形AFOE:S△COD=2:3.
其中正确的结论有_____.(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是( )
A. 0.5B. 0.7C. ﹣1D. ﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一中在每年5月都会举行艺术节活动,活动的形式有A.唱歌、B.跳舞、C.绘画、D.演讲四种形式,学校围绕“你最喜欢的活动方式是什么?”在八年级学生中进行随机抽样调查(四个选项中必须且只选一项),根据调查统计结果,绘制了如图两种不完整的统计图表:
请结合统计图表,回答下列问题:
(1)本次抽查的学生共300人,m=35,并将条形统计图补充完整;
(2)学校采用抽签方式让每班在A、B、C、D四项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com