精英家教网 > 初中数学 > 题目详情

【题目】图形变换中的数学,问题情境:在课堂上,兴趣学习小组对一道数学问题进行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连接CD.

(1)探索发现:
如图①,BC与BD的数量关系是
(2)猜想验证:
如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;
(3)拓展延伸:
若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.

【答案】
(1)BC=BD
(2)

解:BF+BP=BD,

理由:∵∠ACB=90°,∠A=30°,

∴∠CBA=60°,BC= AB,

∵点D是AB的中点,

∴BC=BD,

∴△DBC是等边三角形,

∴∠CDB=60°,DC=DB,

∵线段DP绕点D逆时针旋转60°,得到线段DF,

∴∠PDF=60°,DP=DF,

∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,

∴∠CDP=∠BDF,

在△DCP和△DBF中,

∴△DCP≌△DBF,

∴CP=BF,

∵CP+BP=BC,

∴BF+BP=BC,

∵BC=BD,

∴BF+BP=BD


(3)

解:如图③,

关系:BF=BD+BP,

理由:∵∠ACB=90°,∠A=30°,

∴∠CBA=60°,BC= AB,

∵点D是AB的中点,

∴BC=BD,

∴△DBC是等边三角形,

∴∠CDB=60°,DC=DB,

∵线段DP绕点D逆时针旋转60°,得到线段DF,

∴∠PDF=60°,DP=DF,

∴∠CDB+∠PDB=∠PDF+∠PDB,

∴∠CDP=∠BDF,

在△DCP和△DBF中,

∴△DCP≌△DBF,

∴CP=BF,

∵CP=BC+BP,

∴BF=BC+BP,

∵BC=BD,

∴BF=BD+BP.


【解析】解:(1)∵∠ACB=90°,∠A=30°,
∴∠CBA=60°,BC= AB,
∵点D是AB的中点,
∴BC=BD,
所以答案是:BC=BD;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”: ①点O的“距离坐标”为(0,0);
②在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q>0)的点的“距离坐标”为(0,q);
③到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).
设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:
(1)画出图形(保留画图痕迹): ①满足m=1,且n=0的点M的集合;
②满足m=n的点M的集合;
(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:AC∥DE;
(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+3的对称轴是直线x=1.
(1)求证:2a+b=0;
(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是
(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1 , 它与x轴交于点O,A1;将C1绕点A1旋转180°得C2 , 交x轴于点A2;将C2绕点A2旋转180°得C3 , 交x轴于点A3;…,如此进行下去,直至得Cn . 若P(2014,m)在第n段抛物线Cn上,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线 y=﹣ x2+ x+4经过A、B两点.

(1)求出点A、点B的坐标;
(2)若在线段AB上方的抛物线有一动点P,过点P作直线l⊥x轴交AB于点Q,设点P的横坐标为t(0<t<8),求△ABP的面积S与t的函数关系式,并求出△ABP的最大面积;
(3)在(2)的条件下,是否存在一点P,使SAPB= SABC?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】依次连接菱形各边中点所得到的四边形是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是(

A.∠DAB′=∠CAB′
B.∠ACD=∠B′CD
C.AD=AE
D.AE=CE

查看答案和解析>>

同步练习册答案