精英家教网 > 初中数学 > 题目详情

【题目】已知一纸板的形状为正方形ABCD如图所示.其边长为10厘米,AD、BC与投影面β平行,AB、CD与投影面不平行,正方形在投影面β上的正投影为A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面积.

【答案】50平方厘米.

【解析】试题分析:如图所示,过AAHBB1H由∠ABB1=45°可得△ABH是等腰直角三角形,结合cos45°可求出AH的长度,即求出A1B1的长度,又因为A1D1AD,求出矩形A1B1C1D1的面积即可.

试题解析:

如图所示,过AAHBB1H

∵∠ABB1=45°,

∴△ABH是等腰直角三角形,

AHAB·cos45°=10×=5(厘米),

A1B1AH=5(厘米),

A1D1AD=10(厘米),

∴矩形A1B1C1D1的面积=A1B1·A1D1=5×10=50(平方厘米).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC三个顶点的位置如图(每个小正方形的边长均为1)

(1)请画出△ABC沿轴向右平移3个单位长度,再沿轴向上平移2个单位长度后的(其中分别是ABC的对应点,不写画法)

(2)直接写出三点的坐标;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EBC边的中点,将△ABE沿AE所在的直线折叠得到△AFE,延长AFCD于点G,已知CG=2DG=1,则BC的长是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.

(1)求抛物线的解析式;

(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.

(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的边长为a.直线ybx+cx轴于E,交y轴于F,且abc分别满足﹣(a420c+8.

1)求直线ybx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;

2)直线ybx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;

3)点P为正方形OABC的对角线AC上的动点(端点AC除外),PMPO,交直线ABM,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠A=D有下列五个条件①AE=DE BE=CE AB=DC ④∠ABC=DCBAC=BD能证明ABCDCB全等的条件有几个?并选择其中一个进行证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.

(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;

(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作,垂足为H,连接NP.设点P的运动时间为秒.

NPH的面积为1,求的值;

点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边 ABC 的边长是 2 D E 分别为 AB AC 的中点,连接CD ,过 E 点作 EF // DC BC 的延长线于点 F

(1) 求证:四边形 CDEF 是平行四边形;

(2)求四边形 CDEF 的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的推理.

如图,BE平分ABD,DE平分BDC,且α+β=90°,试说明:ABCD.

完成推理过程:

BE平分∠ABD(已知)

∴∠ABD2α(__________)

DE平分∠BDC(已知)

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知)

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

查看答案和解析>>

同步练习册答案