【题目】(2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为( )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A. 5.1米 B. 6.3米 C. 7.1米 D. 9.2米
科目:初中数学 来源: 题型:
【题目】如图,在网格中,每个小正方形的边长都为1,网格中有两个格点、和直线,且长为3.6.
(1)求作点关于直线的对称点.
(2)为直线上一动点,在图中标出使的值最小的点,且求出的最小值?
(3)求周长的最小值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C在以AB为半径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D
关AC对称,DF⊥DE于点D,并交EC的延长线与点F.下列结论:①CE=CF;②线段EF的最小值为2
③当AD=2时,EF与半圆相切;④当点D从点A运动到点B时,线段EF扫过的面积是16.其中正
确的结论()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过A,B,C三点.
(1)求抛物线的解析式。
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=1的抛物线经过A(﹣1,0)、C(0,3)两点,与x轴的另一个交点为B,点D在y轴上,且OB=3OD
(1)求该抛物线的表达式;
(2)设该抛物线上的一个动点P的横坐标为t
①当0<t<3时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;
②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图①,若∠ABC=∠ADC=90°,求证:ED·EA=EC·EB;
(2)如图②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图③,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】踏春时节,某班学生集体组织亲子游,沿着瓯江口樱花步道骑自行车,该班学生花了950元租了若干辆自行车,已知自行车的类型和租车价格如下表:
自行车类型 | 型车 | 型车 | 型车 |
座位教(个) | 2 | 3 | 4 |
租车价格(元/辆) | 30 | 45 | 55 |
(1)若同时租用、两种类型的车,且共有65个座位,则应租、类型车各多少辆?
(2)若型车租4辆,余下的租用型和型,要求每种车至少租用1辆,请你帮他们设计型车和型车的租车方案.
(3)若同时租用这三类车,且每种车至少租用1辆,则最多能租到______个座位.(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com