【题目】如图,O为坐标原点,点C的坐标为(1,0),∠ACB=90°,∠B=30°,当点A在反比例函数y=的图象上运动时,点B在函数_____(填函数解析式)的图象上运动.
【答案】y=﹣(x>0)
【解析】
如图分别过A、B作AE⊥x轴于E,BD⊥x轴于D.设A(a,b),则ab=1.根据两角对应相等的两三角形相似,得出△EAC∽△BCD,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出BDOD的积,进而得出结果.
分别过A、B作AE⊥x轴于E,BD⊥y轴于D,
.
设A(a,b).
∵点A在反比例函数y=(x>0)的图象上,
∴ab=1.
在△CAE与△BDC中,∠ACE=90°-∠BCD=∠CBD,∠AEC=∠CDB=90°,
∴△CAE∽△BCD,
∴AC:BC=CE:BD=AE:CD,
在Rt△AOB中,∠AOB=90°,∠B=30°,
∴AC:BC=1:,
∴b:CD=(a-1):BD=1:,
∴BD=(a-1),CD=b,
OD=(b-1)
∴BDOD=3ab=3,
又∵点B在第四象限,
∴点B在函数y=-(x>0)的图象上运动,
故答案为:y=-(x>0).
科目:初中数学 来源: 题型:
【题目】(1)如图,点、 分别在正方形 的边、上,,,,连结,把 绕点逆时针旋转至,使与重合.求的面积.
(2)如图,四边形中,,,点、分别在、边上,且,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E点.
(1)当∠BDA=115°时,∠BAD=___°,∠DEC=___°;
(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O上有一个动点A和一个定点B,令线段AB的中点是点P,过点B作⊙O的切线BQ,且BQ=3,现测得的长度是,的度数是120°,若线段PQ的最大值是m,最小值是n,则mn的值是( )
A. 3 B. 2 C. 9 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.
(1)若∠BDA=115°,则∠BAD= °,∠DEC= °;
(2)若DC=AB,求证:△ABD≌△DCE;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地相距150km,甲、乙两人先后从A地出发向B地行驶,甲骑摩托车匀速行驶,乙开汽车且途中速度只改变一次,如图表示的是甲、乙两人之间的距离S关于时间t的函数图象(点F的实际意义是乙开汽车到达B地),请根据图象解答下列问题:
(1)求出甲的速度;
(2)求出乙前后两次的速度,并求出点E的坐标;
(3)当甲、乙两人相距10km时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程(组)及不等式解应用题
某种型号油、电混合动力汽车,从A地到B地使用纯燃油行驶的费用为76元;从A地到B地使用纯电行驶的费用为26元.已知每行驶1千米用纯燃油行驶的费用比用纯电行驶的费用多0.5元.
(1)求用纯电行驶1千米的费用为多少元?
(2)若要使从A地到B地油电混合行驶所需的油和电总费用不超过39元,则至少用电行驶多少千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com