精英家教网 > 初中数学 > 题目详情
6.如图,一条信息可通过网络线由上(A点)往下(沿箭头方向)向各站点传送,例如信息要到b2点可由经a1的站点送达,也可由经a2的站点送达,共有两条传送途径,则信息由A点传达到d3的不同途径中,经过站点b3的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 根据题意画出树状图,进而利用概率公式,求出答案.

解答 解:画树状图得:

所以共有6种情况,则经过站点b3的概率为:$\frac{1}{6}$.
故选:A.

点评 本题考查树状图法求概率,关键是得到到达目的地应走的路口,列齐所有的可能情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.有一个二次函数的图象,三位同学分别说出了它的一些特点:
甲:对称轴为直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数.
请你写出满足上述全部特点的一个二次函数表达式y=$\frac{8}{5}$x2-$\frac{8}{5}$x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,抛物线y=-$\frac{1}{2}$x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).
(1)求抛物线的表达式;
(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(3)在抛物线的对称轴上是否存在点P,使△PCD是等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知关于x的二次函数y=x2-2mx+m2+m的图象与直线y=kx+1.
(1)若k=1,求证:无论m为何值,二次函数图象与直线总有两个不同交点.
(2)在(1)条件下,若两图象交于两点A、B,试证明AB的长为定值,并求出这个定值.
(3)当m=0,设两图象交于两点A(x1,y1),B(x2,y2),原点为O,无论k为何值时,猜想△AOB的形状,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知抛物线y=x2+(2-m)x-2m(m≠-2)与y轴交于点A,与x轴交于点B、C(B点在C点的左边).
(1)写出A、B、C三点的坐标;
(2)设m=a2-2a+4,试问是否存在实数a,使△ABC为直角三角形;
(3)设m=a2-2a+4,当∠BAC最大时,求实数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,△AOB和△ACD均为正三角形,且顶点B、D均在反比例函数y=$\frac{4}{x}$在第一象限的图象上,BC、AD交于P,则△OBP的面积是(  )
A.4B.4$\sqrt{3}$C.3$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,若两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p,q)共有(  )
A.12组B.10组C.6组D.5组

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知x2-(2x+8)=0,则3x2-6(x+3)的值为(  )
A.54B.6C.-10D.-18

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,直线l与x轴平行,且与抛物线交于点A、B,若△AMB为等腰直角三角形,我们就把抛物线上A、B两点之间的部分与线段AB围成的图象称为该抛物线对应的“准蝶形”,线段AB的长称为碟宽,顶点M称为碟顶.
(1)填空:抛物线y=x2的碟宽为2,碟顶坐标为(0,0);
(2)求抛物线y=a(x-2)2+3(a>0)的碟宽(用含a的代数式表示);
(3)若抛物线y=ax2-4ax-$\frac{5}{3}$(a>0)的碟宽为6,求该抛物线的碟顶坐标.

查看答案和解析>>

同步练习册答案