精英家教网 > 初中数学 > 题目详情
1.已知抛物线y=x2+(2-m)x-2m(m≠-2)与y轴交于点A,与x轴交于点B、C(B点在C点的左边).
(1)写出A、B、C三点的坐标;
(2)设m=a2-2a+4,试问是否存在实数a,使△ABC为直角三角形;
(3)设m=a2-2a+4,当∠BAC最大时,求实数a的值.

分析 (1)先令x=0,求出点A坐标,再令y=0求出方程的根,分两种情况得出点B,C坐标;
(2)先判断得出点B,C坐标,再求出AB2,BC2,AC2,用m的范围得出AB,BC,AC的大小,从而得出结论;
(3)根据三角形的边角的不等关系得出结论.

解答 解:(1)令x=0,由y=x2+(2-m)x-2m(m≠2),
∴y=-2m,
∴A的坐标为(0,-2m)
  令y=0,由y=x2+(2-m)x-2m(m≠2),
∴x2+(2-m)x-2m=0,
∴(x+2)(x-m)=0
∴x1 =-2,x2=m
∵B点在C点左边.
∴①当 m<-2时,B,C的坐标分别为(m,0)和(-2,0).
②当 m>-2,但m≠2时,B,C的坐标分别为(-2,0)和(m,0).
 
(2)不存在,
理由:∵m=a2-2a+4=(a-1)2+3≥3.
由(1)的结论知,A的坐标为(0,-2m),B,C的坐标分别为(-2,0)和(m,0).
∴AB2=4m2+4
     BC2=(m+2)2=m2+4m+4
    AC2=m2+4m2 =5m2
∵m≥3,
∴3m2=m×3m≥9m>4m,
∴AB2 =4m2+4>m2 +4m+4=BC2
∴AB>BC.
∵m≥3,
∴m2>=9>4,
∴AC2 =5m2 >4m2 +4=AB2
∴AC>AB.
∴AC>AB>BC.
∵AB2 +BC2=5m2+4m+8>5m2 =AC2
∴不存在实数a,使△ABC为Rt△.
 
(3)不存在,
理由:∵m=a2-2a+4=(a-1)2+3≥3.
由(2)的结论知,AC>AB>BC.
∴∠BAC 最小.
∴不存在实数a,能使得∠BAC最大.

点评 此题是二次函数综合题,主要考查了坐标轴上点的特点,二次函数的极值,直角三角形的判断,三角形边的大小的判断方法,解本题的关键是得出AC>AB>BC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.
(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;
(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.
①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?
②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,数轴上有3个点,它们所表示的数分别用a,b,c.
(1)在数轴上标出a,b,c的相反数-a,-b,-c;
(2)把a,b,c和它们的相反数用“<”连接起来;
(3)如果将表示数a的点向左移动3个单位长度,同时将表示数b的点向右移动5个单位长度,表示数c的点保持在原来的位置,则移动后的a,b,c三个数的大小关系如何?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知一元二次方程M:x2-bx-c=0和N:y2+cy+b=0
(1)若方程M的两个根分别为x1=-1,x2=3,求b,c的值及方程N的两根;
(2)若方程M和N有且只有一个根相同,则这个根是-1,此时b-c=-1;
(3)若x为方程M的根,y为方程N的根,是否存在x,y,使下列四个代数式①?x+y②?x-y?③$\frac{x}{y}$④xy的数值中有且仅有三个数值相同.若存在,请求出x和y的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知二次函数y=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.

(1)点A的坐标为(0,4),点C的坐标为(8,0);
(2)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;
(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有两个,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,一条信息可通过网络线由上(A点)往下(沿箭头方向)向各站点传送,例如信息要到b2点可由经a1的站点送达,也可由经a2的站点送达,共有两条传送途径,则信息由A点传达到d3的不同途径中,经过站点b3的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.点P为反比例函数y=$\frac{{k}_{1}}{x}$上一点,向x,y轴上作垂线,交反比例函数y=$\frac{{k}_{2}}{x}$上于点A,B,交x轴于点D,交y轴于点C,则
(1)S△OAC=S△OBD
(2)A为PC中点时,S△OCA=S△AOP=S△POB=S△BOD
(3)A为PC中点时,B为PD中点;
(4)$\frac{AC}{PC}$=$\frac{1}{n}$时,$\frac{BD}{PD}$=$\frac{1}{n}$;
(5)S四边形AOBP=|k1-k2|为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列各式中正确的是(  )
A.$\sqrt{(-5)^{2}}$=-5B.-$\sqrt{9}$=-3C.(-$\sqrt{2}$)2=4D.$\sqrt{48}$-$\sqrt{3}$=3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知长方形ABCO,A,C分别在x轴、y轴上,O是原点,点B(2,1),点D($\sqrt{3}$,0),将四边形ABCD沿折痕CD翻折.
(1)画出四边形ABCD翻折后的大致位置;
(2)求A、B两点翻折后的对应点A1,B1的坐标.

查看答案和解析>>

同步练习册答案