精英家教网 > 初中数学 > 题目详情
11.已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.
(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;
(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.
①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?
②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.

分析 (1)当△PBC是直角三角形时,∠B=60°,所以BP=1.5cm,即可算出t的值;
(2)①因为∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,然后可证明△APD是直角三角形,即可根据题意求出t的值;
②面积相等.可通过同底等高的三角形的面积相等即可.

解答 解:(1)当△PBC是直角三角形时,∠B=60°,
∠BPC=90°,所以BP=1.5cm,
所以t=$\frac{3}{2}$,

(2)①∵∠DCQ=120°,
当△DCQ是等腰三角形时,CD=CQ,
∴∠PDA=∠CDQ=∠CQD=30°,
∵∠A=60°,
∴AD=2AP,
∴2t+t=3,
解得t=1(s);
②相等,如图所示:

作PE垂直AD,QG垂直AD延长线,则PE∥QG,
∴∠G=∠AEP,
在△EAP和△GCQ,$\left\{\begin{array}{l}{∠G=∠AEP}\\{∠APE=∠CQG}\\{AP=CQ}\end{array}\right.$,
∴△EAP≌△GCQ(AAS),
∴PE=QG,
∴△PCD和△QCD同底等高,
所以面积相等.

点评 此题是三角形综合题,主要考查对于勾股定理的应用和等腰三角形的判定,还要注意三角形面积的求法,判断出△EAP≌△GCQ(AAS)是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.已知⊙O的直径CD=10,弦AB⊥CD于M,且AB=8,求弦AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某乒乓球馆使用发球机进行辅助训练,假设发球机每次发出的乒乓球的运动路线是固定不变的,在乒乓球运行时,设乒乓球与发球机的水平距离为x(米),与桌面的高度为y(米),经多次测试后,得到如下数据:
 x(米) 0 0.4 0.8 1 2 3.2
 y(米) 1 1.08 1.12 1.125 1 0.52
(1)把上表中x,y的各组对应值作为点的坐标,在平面直角坐标系中描出相应的点,猜想y与x的函数解析式,并求出函数关系式;
(2)乒乓球经发球机发出后,最高点离地面多少米?
(3)当球拍触球时,球离地面的高度为$\frac{5}{8}$米.
①此时发球机与球的水平距离;
②现将发球机向后平移了0.4米,为确保球拍在原位置接到,发球机需调高多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.现有1,2,…,48,49这49个连续的正整数,从中选取n个数围成一个圈,如果圈上任意相邻的两个数的乘积都小于100,则n的最大值是(  )
A.17B.16C.18D.19

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,四边形ABCD是⊙O的内接四边形,延长DC,AB交于点E,且BE=BC.
(1)求证:△ADE是等腰三角形;
(2)若∠D=90°,⊙O的半径为5,BC:DC=1:$\sqrt{2}$,求△CBE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.有一个二次函数的图象,三位同学分别说出了它的一些特点:
甲:对称轴为直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数.
请你写出满足上述全部特点的一个二次函数表达式y=$\frac{8}{5}$x2-$\frac{8}{5}$x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图正方形网格中,sin∠ABC的值为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算
(1)(-6.5)-(-4$\frac{1}{4}$)+8$\frac{3}{4}$-(+3$\frac{1}{2}$)+5
(2)$\frac{1}{2}$-2$\frac{1}{4}$-3$\frac{1}{2}$+2.25
(3)-3$\frac{1}{2}$×(-$\frac{6}{7}$)-(-10)÷(-$\frac{2}{3}$)
(4)(-4)×(-3)+(-$\frac{1}{2}$)-23
(5)-1-48×($\frac{5}{24}$-$\frac{3}{16}$+$\frac{1}{6}$)
(6)(-$\frac{1}{36}$)÷(-$\frac{2}{9}$+$\frac{1}{3}$-$\frac{1}{6}$+$\frac{1}{4}$)
(7)-22-[(-3)×(-$\frac{4}{3}$)-(-2)3]
(8)-$\frac{3}{2}$×[-32×(-$\frac{2}{3}}$)2-2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知抛物线y=x2+(2-m)x-2m(m≠-2)与y轴交于点A,与x轴交于点B、C(B点在C点的左边).
(1)写出A、B、C三点的坐标;
(2)设m=a2-2a+4,试问是否存在实数a,使△ABC为直角三角形;
(3)设m=a2-2a+4,当∠BAC最大时,求实数a的值.

查看答案和解析>>

同步练习册答案