精英家教网 > 初中数学 > 题目详情

【题目】对于抛物线yx22mx+m2+m2,当﹣1≤x≤2时,函数的最小值为m,则m的值为(

A.B.

C.D.

【答案】A

【解析】

根据抛物线yx22mx+m2+m2,当﹣1≤x≤2时,函数的最小值为m,可以得到该抛物线的对称轴,然后利用分类讨论的方法可以得到m的值,本题得以解决.

解:∵抛物线yx22mx+m2+m2=(xm2+m2

∴该抛物线的对称轴是直线xm

∵当﹣1≤x≤2时,函数的最小值为m

∴当m≤1时,在﹣1≤x≤2时,yx增大而增大,所以当x=﹣1时,y为最小值m,即(﹣1m2+m2m,得m=﹣1

当﹣1m2时,当xm时,取得最小值,即m2m,此方程无解;

m≥2时,在﹣1≤x≤2时,yx增大而减小,所以当x2时,y为最小值m,即(2m2+m2m,得m2+

由上可得,m的值是﹣12+

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将二次函数y (x2)21的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1m)B(4n)平移后对应点分别是A′B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,已知抛物线(a0)x轴交于AB两点(A在点B左侧),与y轴负半轴交于点C,顶点为D,已知S四边形ACBD=14

1)求点D的坐标(用仅含c的代数式表示)

2)若tan∠ACB=,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:点PABC内部或边上的点(顶点除外),在PABPBCPCA中,若至少有一个三角形与ABC相似,则称点PABC的自相似点.

例如:图1PABC的内部,PBC=APCB=ABCBCP∽△ABC,故PABC的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,M曲线C上的任意一点,点Nx轴正半轴上的任意一点.

(1) 如图2,点P是OM上一点,ONP=M, 试说明点P是MON的自相似点; M的坐标是N的坐标是时,求点P 的坐标;

(2) 如图3,当M的坐标是N的坐标是时,求MON的自相似点的坐标;

(3) 是否存在点M和点N,使MON无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=-x+3x轴,y轴分别交于BC两点,抛物线y=-x2+bx+c经过BC两点,点A是抛物线与x轴的另一个交点.

1)求此抛物线的函数解析式;

2)在抛物线上是否存在点P,使SPAB=2SCAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:

根据上述信息完成下列问题:

(1)求这次抽取的样本的容量;

(2)请在图②中把条形统计图补充完整;

(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形EFGH的顶点EG分别在菱形ABCD的边ADBC上,顶点FH在菱形ABCD的对角线BD上.

1)求证:BG=DE

2)若EAD中点,FH=2,求菱形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交ABAD于点MN②分别以MN为圆心,以大于MN的长为半径作弧,两弧相交于点P③作AP射线,交边CD于点Q,若DQ=2QCBC=3,则平行四边形ABCD周长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】舍利生生塔位于晋祠南瑞,建于隋开皇年间,宋代重修,清乾隆十六年(1751年)重建.七屋八角,琉璃瓦顶,远远望去,高耸的古塔,映衬着蓝天白云,甚是壮观.原塔内每层均有佛像,开48窗,凭窗远眺,晋祠内外美景可一览无余.如果在夕阳西下时欣赏宝塔,还会出现——天云锦、满塔光辉的壮丽景观,被誉为“宝塔披霞”.某数学“综合与实践”小组的同学把“测量舍利生生塔高”作为一项课题活动,他们制定了测量方案,并利用课余时间完成了实地测量,测量结果如表:

课题

测量舍利生生塔高

测量示意图

说明:某同学在地面上选择点C,使用手持测角仪,测得此时楼顶A的仰角∠AHEα,沿CB方向前进到点D,测量出CD之间的距离CDxm,在点D使用手持测角仪,测得此时楼顶A的仰角∠AFEβ

测量数据

α的度数

β的度数

CD的长度

该同学眼睛离地面的距离HC

24°

37°

32m

1.76m

1)请帮助该小组的同学根据上表中的测量数据,求塔高AB.(结果精确到1m;参考数据:sin24°≈0.41cos24°≈0.91tan24°≈0.45sin37°≈0.60cos37°≈0.80tan37°≈0.75

2)该小组要写出一份完整的课题活动报告,除上表中的项目外,你认为还需要补充哪些项目?(写出一个即可)

查看答案和解析>>

同步练习册答案