精英家教网 > 初中数学 > 题目详情

【题目】如图所示,等边△ABC中,边长为4,P、QAB、AC上的点,将△ABC沿着PQ折叠,使得A点与线段BC上的点D重合,且BD:CD=1:3,则AQ的长度为_____

【答案】

【解析】

由等边三角形性质得到△BPD∽△CDQ,得,设AQ=x,则CQ=4-x,

,BP= , PD= ,由BP+PD=4,得+=4.

因为,△ABC是等边三角形,

所以,∠A=∠B=∠C=∠PDQ=60

因为,∠PDC=∠B+∠BPD,∠B=∠PDQ,

所以,∠QDC=∠BPD,

所以,△BPD∽△CDQ,

所以,,

因为,BD∶DC=1∶3,BC=4,

所以,BD=1,DC=3,

设AQ=x,则CQ=4-x,

所以,

所以,BP= , PD= ,

因为,BP+PD=4,

所以,+=4,

解得x=,

所以,AQ=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB=90°AB=10cmBC=6cm,若点P从点A出发,以每秒4cm的速度沿折线ACBA运动,设运动时间为t秒(t0).

1)若点PAC上,且满足BCP的周长为14cm,求此时t的值;

2)若点P在∠BAC的平分线上,求此时t的值;

3)在运动过程中,直接写出当t为何值时,BCP为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请仔细观察图中等边三角形图形的变化规律,写出你发现关于等边三角形内一点到三边距离的数学事实:_____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数yax22ax3aa0)的图象与x轴交于AB两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D

1)求顶点D的坐标(用含a的代数式表示);

2)若以AD为直径的圆经过点C

①求抛物线的函数关系式;

②如图2,点Ey轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点PMN分别和点OBE对应),并且点MN都在抛物线上,作MFx轴于点F,若线段MFBF12,求点MN的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过AB两点,并且和直线CD相切,如图3,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知:点A(0,0),B(,0),C(0,1)△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1△AA1B1,第2△B1A2B2,第3△B2A3B3,…,则第个等边三角形的边长等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,AOF=90°.求证:BE=CF.

(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,FOH=90°, EF=4.求GH的长.

(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,FOH=90°,EF=4. 直接写出下列两题的答案:

如图3,矩形ABCD由2个全等的正方形组成,求GH的长

如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.

(1)求这两个函数的表达式;

(2)求AOB的面积S.

查看答案和解析>>

同步练习册答案