【题目】已知关于x的一元二次方程有实数根.
(1)求m的值;
(2)先作的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求的最大值和最小值.
【答案】(1)1;(2);(3)最大值为21,最小值为﹣4.
【解析】
试题分析:(1)由题意△≥0,列出不等式,解不等式即可;
(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;
(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;
试题解析:(1)对于一元二次方程,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.
(2)由(1)可知= ,图象如图所示:
平移后的解析式为,即.
(3)由消去y得到,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n≤m,m=1,∴1≤n≤7,令y′=n2﹣4n=(n﹣2)2﹣4,∴n=2时,y′的值最小,最小值为﹣4,n=7时,y′的值最大,最大值为21,∴的最大值为21,最小值为﹣4.
科目:初中数学 来源: 题型:
【题目】已知x1、x2为一元二次方程x2﹣bx﹣3=0的两个实数根,且x1+x2=2,则( )
A.x1=1,x2=3B.x1=﹣1,x2=﹣3
C.x1=1,x2=﹣3D.x1=﹣1,x2=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.
(1)猜想:四边形CEDO是什么特殊的四边形?
(2)试证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,由长度为1个单位的若干小正方形组成的网格图中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;
(2)三角形ABC的面积为
(3)以AC为边作与△ABC全等的三角形(只要作出一个符合条件的三角形即可);
(4)在直线l上找一点P,使PB+PC的长最短.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com