【题目】如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.
(1)求证:CD是⊙O的切线;
(2)若AD⊥CD,AB=10,AD=8,求AC的长;
(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.
【答案】(1)见解析;(2)AC的长为4;(3)AC=BC+EC,理由见解析
【解析】
(1)连接OC,由直径所对圆周角是直角可得∠ACB=90°,由OC=OB得出∠OCB=∠B,由因为∠DCA=∠B,从而可得∠DCA=∠OCB,即可得出∠DCO=90°;
(2) 由题意证明△ACD∽△ABC,根据对应边成比例列出等式求出AC即可;
(3) 在AC上截取AF使AF=BC,连接EF、BE,通过条件证明△AEF≌△BEC,根据性质推出△EFC为等腰直角三角形,即可证明AC、EC、BC的数量关系.
(1)证明:连接OC,如图1所示:
∵AB是⊙O的直径,
∴∠ACB=90°,
∵OC=OB,
∴∠B=∠OCB,
∵∠DCA=∠B,
∴∠DCA=∠OCB,
∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,
∴CD⊥OC,
∴CD是⊙O的切线;
(2)解:∵AD⊥CD
∴∠ADC=∠ACB=90°
又∵∠DCA=∠B
∴△ACD∽△ABC
∴,即,
∴AC=4,
即AC的长为4;
(3)解:AC=BC+EC;理由如下:
在AC上截取AF使AF=BC,连接EF、BE,如图2所示:
∵AB是直径,
∴∠ACB=∠AEB=90°,
∵∠DAB=45°,
∴△AEB为等腰直角三角形,
∴∠EAB=∠EBA=∠ECA=45°,AE=BE,
在△AEF和△BEC中,,
∴△AEF≌△BEC(SAS),
∴EF=CE,∠AFE=∠BCE=∠ACB+∠ECA=90°+45°=135°,
∴∠EFC=180°﹣∠AFE=180°﹣135°=45°,
∴∠EFC=∠ECF=45°,
∴△EFC为等腰直角三角形.
∴CF=EC,
∴AC=AF+CF=BC+EC.
科目:初中数学 来源: 题型:
【题目】将抛物线y=﹣x2向左平移3个单位,再向上平移4个单位.
(1)写出平移后的抛物线的函数关系式.
(2)若平移后的抛物线的顶点为A,与x轴的两个交点分别是B、C,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=α,点D在边AC上(不与点A,C重合)连接BD,点K为线段BD的中点,过点D作DE⊥AB于点E,连结CK,EK,CE,将△ADE绕点A顺时针旋转一定的角度(旋转角小于90°)
(1)如图1,若α=45°,则△ECK的形状为______;
(2)在(1)的条件下,若将图1中的△ADE绕点A旋转,使得D,E,B三点共线,点K为线段BD的中点,如图2所示,求证:BE-AE=2CK;
(3)若△ADE绕点A旋转至图3位置时,使得D,E,B三点共线,点K仍为线段BD的中点,请你直接写出BE,AE,CK三者之间的数量关系(用含α的三角函数表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 某蛋糕店出售网红“奶昔包”,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,当以40元每件出售时,每天可以卖300件,当以55元每件出售时,每天可以卖150件.
(1)求y与x之间的函数关系式;
(2)如果规定每天“奶昔包”的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该蛋糕店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试直接写出该“奶昔包”销售单价的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC高452m,是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,在楼DE底端D点测得A的仰角为α,tanα=,在顶端E点测得A的仰角为45°,AE=140m
(1)求两楼之间的距离CD;
(2)求发射塔AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.
(1)求证:CF是⊙O的切线.
(2)若∠A=22.5°,求证:CE=CB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数,反比例函数或二次函数中的一种)
x(亩) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(1)请求出种植樱桃的面积超过15亩时每亩获得利润y与x的函数关系式;
(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过50亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(3,1)表示方格纸上A点的位置,用(2,2)表示点B的位置,那么由四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示为_____(数为整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com