分析 (1)由折叠可得AB=AB′,BE=B′E,再根据四边形ABCD是正方形,易证B′E=B′F,即可证明DF+BE=AF;
(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE-DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,
根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.
解答 解:(1)由折叠可得AB=AB′,BE=B′E,
∵四边形ABCD是正方形,
∴AB=DC=DF,∠B′CE=45°,
∴B′E=B′F,
∴AF=AB′+B′F,
即DF+BE=AF;
(2)图(2)的结论:DF+BE=AF;
图(3)的结论:BE-DF=AF;
图(2)的证明:延长CD到点G,使DG=BE,连接AG,
需证△ABE≌△ADG,
∵CB∥AD,
∴∠AEB=∠EAD,
∵∠BAE=∠B′AE,
∴∠B′AE=∠DAG,
∴∠GAF=∠DAE,
∴∠AGD=∠GAF,
∴GF=AF,
∴BE+DF=AF;
图(3)的证明:在BC上取点M,使BM=DF,连接AM,
需证△ABM≌△ADF,
∵∠BAM=∠FAD,AF=AM
∵△ABE≌AB′E
∴∠BAE=∠EAB′,
∴∠MAE=∠DAE,
∵AD∥BE,
∴∠AEM=∠DAB,
∴∠MAE=∠AEM,
∴ME=MA=AF,
∴BE-DF=AF.
点评 本题考查了全等三角形的判定和性质,正方形的性质以及翻折变换,是一道综合型的题目,难度不大,而证明三角形的全等是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 20cm | B. | 30cm | C. | 15cm | D. | 35cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2a3+a3=3a6 | B. | (-a)2•a3=-a6 | C. | (-$\frac{1}{2}$)-2=4 | D. | (-2)0=-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com