相关习题
 0  347648  347656  347662  347666  347672  347674  347678  347684  347686  347692  347698  347702  347704  347708  347714  347716  347722  347726  347728  347732  347734  347738  347740  347742  347743  347744  347746  347747  347748  347750  347752  347756  347758  347762  347764  347768  347774  347776  347782  347786  347788  347792  347798  347804  347806  347812  347816  347818  347824  347828  347834  347842  366461 

科目: 来源: 题型:

【题目】如图,已知四边形ABCD内接于⊙O,直径AC=6,对角线AC、BD交于E点,且AB=BD,EC=1,则AD的长为(
A.
B.
C.
D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】计算:12﹣(﹣18+(﹣7)=_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCD中,对角线AC、BD交于点O,并且∠DAC=60°,∠ADB=15°.点E是AD边上一动点,延长EO交BC于点F.当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是(
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→菱形→平行四边形→矩形→平行四边形
C.平行四边形→矩形→平行四边形→正方形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+2与直线l交于点A、B两点,且A点为抛物线与y轴的交点,B(﹣2,﹣4),抛物线的对称轴是直线x=2,过点A作AC⊥AB,交抛物线于点C、x轴于点D.

(1)求此抛物线的解析式;
(2)求点D的坐标;
(3)抛物线上是否存在点K,使得以AC为边的平行四边形ACKL的面积等于△ABC的面积?若存在,请直接写出点K的横坐标;若不存在,请说明理由.[提示:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣ ,顶点坐标为(﹣ )].

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中, △ABC三个顶点的位置如图(每个小正方形的边长均为1).

(1)请画出△ABC沿x轴向右平移3个单位长度,再沿y轴向上平移2个单位长度后的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点,不写画法)

(2)直接写出A′、B′、C′三点的坐标:

A′(___________); B′(___________);C′(___________)。

(3)求△ABC的面积。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.

(1)从火车站到码头怎样走最近,画图并说明理由;

(2)从码头到铁路怎样走最近,画图并说明理由;

(3)从火车站到河流怎样走最近,画图并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知⊙O是以BC为直径的△ABC的外接圆,OP∥AC,且与BC的垂线交于点P,OP交AB于点D,BC、PA的延长线交于点E.
(1)求证:PA是⊙O的切线;
(2)若sinE= ,PA=6,求AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,有下列判断:①A与1是同位角;②A与B是同旁内角;③4与1是内错角;④1与3是同位角. 其中正确的是 (填序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】某商家到梧州市一茶厂购买茶叶,购买茶叶数量为x千克(x>0),总费用为y元,现有两种购买方式. 方式一:若商家赞助厂家建设费11500元,则所购茶叶价格为130元/千克;(总费用=赞助厂家建设费+购买茶叶费)
方式二:总费用y(元)与购买茶叶数量x(千克)满足下列关系式:y=
请回答下面问题:
(1)写出购买方式一的y与x的函数关系式;
(2)如果购买茶叶超过150千克,说明选择哪种方式购买更省钱;
(3)甲商家采用方式一购买,乙商家采用方式二购买,两商家共购买茶叶400千克,总费用共计74600元,求乙商家购买茶叶多少千克?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,已知BADBCE均为等腰直角三角形,∠BAD=BCE=90°,点MDE的中点.过点EAD平行的直线交射线AM于点N

(1)当ABC三点在同一直线上时(如图1),求证:MAN的中点;

(2)将图1中BCE绕点B旋转,当ABE三点在同一直线上时(如图2),求证:CAN为等腰直角三角形;

(3)将图1中BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案