科目: 来源: 题型:
【题目】如图,正比例函数y=
x的图象与反比例函数y=
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】为提高饮水质量,越来越多的居民开始选购家用净水器.一商家抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元?(注:毛利润=售价﹣进价)
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,由于受国际石油市场的影响,汽油价格不断上涨.下面是小明与爸爸的对话:
小明:“爸爸,听说今年5月份的汽油价格上涨了不少啊!”
爸爸:“是啊,今年5月份每升汽油的价格是去年5月份每升汽油的价格的
倍,用150元给汽车加的油量比去年少11.25升.”
小明:“今年5月份每升汽油的价格是多少呢?”
聪明的你,根据上面的对话帮小明计算一下今年5月份每升汽油的价格?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知y=y1﹣y2,y1与x2成正比例,y2与x﹣1成反比例,当x=﹣1时,y=3;当x=2时,y=﹣3.
(1)求y与x之间的函数关系;
(2)当x=
时,求y的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:
由于a≠0,方程ax2+bx+c=0变形为:
x2+
x=﹣
,…第一步
x2+
x+(
)2=﹣
+(
)2,…第二步
(x+
)2=
,…第三步
x+
=
(b2﹣4ac>0),…第四步
x=
,…第五步
嘉淇的解法从第 步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图,在△ABC中,D,E,F是边BC上的三点,且∠1=∠2=∠3=∠4,以AE为角平分线的三角形有_________;
(2)如图,已知AE平分∠BAC,且∠1=∠2=∠4=15°,计算∠3的度数,并说明AE是△DAF的角平分线.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】填写下面证明过程中的推理依据:
已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,求证∠BDE=∠C.
![]()
证明:∵AD⊥BC,FG⊥BC (已知),
∴∠ADC=∠FGC=90°____________.
∴AD∥FG______________________.
∴∠1=∠3___________________
又∵∠1=∠2,(已知),
∴∠3=∠2____________.
∴ED∥AC_____________.
∴∠BDE=∠C______________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,BE,CD分别为其角平分线且交于点O.
(1)当∠A=60°时,求∠BOC的度数;
(2)当∠A=100°时,求∠BOC的度数;
(3)当∠A=α时,求∠BOC的度数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.
(1)请补画出它的俯视图,并标出相关数据;
(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据___________,SAS
易证△AFG≌___________△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°.点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系______________∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com