相关习题
 0  347990  347998  348004  348008  348014  348016  348020  348026  348028  348034  348040  348044  348046  348050  348056  348058  348064  348068  348070  348074  348076  348080  348082  348084  348085  348086  348088  348089  348090  348092  348094  348098  348100  348104  348106  348110  348116  348118  348124  348128  348130  348134  348140  348146  348148  348154  348158  348160  348166  348170  348176  348184  366461 

科目: 来源: 题型:

【题目】在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(﹣1,2).

(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1

(2)画出与△A1B1C1关于y轴对称的△A2B2C2

(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为   

(4)试在y轴上找一点Q(在图中标出来),使得点Q到B2、C2两点的距离之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)问题发现:如图1,ACBDCE均为等边三角形,当DCE旋转至点A,D,E在同一直线上,连接BE.

填空:① AEB的度数为_______②线段AD、BE之间的数量关系是______

(2)拓展研究:

如图2,ACBDCE均为等腰三角形,且∠ACB=DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.

(3)探究发现:

1中的ACBDCE,在DCE旋转过程中当点A,D,E不在同一直线上时,设直线ADBE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明同学在做作业时,遇到这样一道几何题:

已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:CMD的度数.

小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:

请问小坚的提示中   ,④   

理由是:   

理由是:   

CMD的度数是   °.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面直角坐标系中,直线AB: 交y轴于点A,交x轴于点B,过点E(2,0)作x轴的垂线EF交AB于点D,点P是垂线EF上一点,且S△ADP=2,以PB为边在第一象限作等腰Rt△BPC,则点C的坐标为_________

查看答案和解析>>

科目: 来源: 题型:

【题目】西瓜经营户以2/千克的价格购进一批小型西瓜,以3/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低(  )元.

A.0.2或0.3

B.0.4

C.0.3

D.0.2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影.已知桌面的直径为12 m,桌面距离地面1 m.若灯泡距离地面3 m,则地面上阴影部分的面积为 ( )

A. 036πm2 B. 081πm2 C. 2πm2 D. 3.24πm2

查看答案和解析>>

科目: 来源: 题型:

【题目】为丰富居民业余生活某居民区组建筹委会该筹委会动员居民自愿集资建立一个书刊阅览室经预算一共需要筹资30 000其中一部分用于购买书桌、书架等设施另一部分用于购买书刊

(1)筹委会计划购买书刊的资金不少于购买书桌、书架等设施资金的3问最多用多少资金购买书桌、书架等设施?

(2)经初步统计200户居民自愿参与集资那么平均每户需集资150镇政府了解情况后赠送了一批阅览室设施和书籍这样只需参与户共集资20 000经筹委会进一步宣传自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一次函数y=kx+7的图像经过点A(2,3)

(1)求k的值;

(2)判断点B(-1,8),C(3,1)是否在这个函数的图像上,并说明理由;

(3)当-3<x<-1时,求y的取值范围

【答案】(1)k=-2(2)点B不在,点C在,(3)9<y<13

【解析】

试题分析:(1)把点A(2,3)代入y=kx+7即可求出k的值;(2)点B(-1,8),C(3,1)的横坐标代入函数解析式验证即可;(3)根据x的取值范围,即可求出y的取值范围

试题解析:(1)把点A(2,3)代入y=kx+7得:k=-2

(2)当x=-1时,y=-2×(-1)+7=9

98点B不在抛物线上

当x=3时,y=-2×3+7=1

点C在抛物线上

(3)当x=-3时,y=13,当x=-,1时,y=9,所以9<y<13

考点:一次函数

型】解答
束】
24

【题目】顺丰快递公司派甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1h)到达B地,如图,线段OPMN分别表示甲、乙两车离A地的距离Skm)与时间th)的关系,a表示AB两地之间的距离.请结合图中的信息解决如下问题:

1)分别计算甲、乙两车的速度及a的值;

2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离Skm)与时间th)的函数图象.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②∠DCP=45°;③BP垂直平分CE;④GF+ FC =GA;其中正确的判断有______________.(填序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在所给正方形网格(每个小网格的边长是1)图中完成下列各题.

1)格点△ABC(顶点均在格点上)的面积=_________

2)画出格点△ABC关于直线DE对称的△A1B1C1

3)在DE上画出点P,使PB+PC最小,并求出这个最小值.

【答案】1)面积等于52图形见解析3)最小值是根号17

【解析】试题分析:(1)利用勾股定理求出三角形边长,并证明是直角三角形求面积.(2)画出A,B,C的对称点A1,B2,C3,连接三角形.(3)利用对称利用两点之间直线最短求最小值.

试题解析:

1分别利用勾股定理求得AC=2,AB=,BC= ,所以∠ACB=90°面积等于=5.

2)画出A,B,C的对称点A1,B2,C3,连接三角形.如下图.

3)作B点对称B’,连接B’CDEP,B’P+PC=BP+CP,所以使PB+PC最小.

利用勾股定理B’C=

所以最小值是根号17.

点睛:平面上最短路径问题

(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.

(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.

(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.

型】解答
束】
23

【题目】已知一次函数y=kx+7的图像经过点A(2,3)

(1)求k的值;

(2)判断点B(-1,8),C(3,1)是否在这个函数的图像上,并说明理由;

(3)当-3<x<-1时,求y的取值范围

查看答案和解析>>

同步练习册答案