相关习题
 0  348000  348008  348014  348018  348024  348026  348030  348036  348038  348044  348050  348054  348056  348060  348066  348068  348074  348078  348080  348084  348086  348090  348092  348094  348095  348096  348098  348099  348100  348102  348104  348108  348110  348114  348116  348120  348126  348128  348134  348138  348140  348144  348150  348156  348158  348164  348168  348170  348176  348180  348186  348194  366461 

科目: 来源: 题型:

【题目】如图所示,下列条件中,能判断直线L1L2的是( )

A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形OABC中,已知点A、C两点的坐标为A (,),C (2,0).

(1)求点B的坐标.

(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.

(3)求平行四边形OABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于 AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(
A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场在世界杯足球比赛期间举行促销活动,并设计了两种方案:一种是以商品价格的九五折优惠的方式进行销售;一种是采用有奖销售的方式,具体措施是:有奖销售自2009年6月9日起,发行奖券10000张,发完为止;顾客累计购物满400元,赠送奖券一张(假设每位顾客购物每次都恰好凑足400元);世界杯后,顾客持奖券参加抽奖;奖项是:特等奖2名,各奖3000元奖品;一等奖10名,各奖1000元奖品;二等奖20名,各奖300元奖品;三等奖100名,各奖100元奖品;四等奖200名,各奖50元奖品;纪念奖5000名,各奖10元奖品,试就商场的收益而言,对两种促销方法进行评价,选用哪一种更为合算?

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学将组织七年级学生春游一天由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜

1两同学向公司经理了解租车的价格公司经理对他们说公司有45座和60座两种型号的客车可供租用60座的客车每辆每天的租金比45座的贵100元王老师说我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车一天的租金为1600元你们能知道45座和60座的客车每辆每天的租金各是多少元吗甲、乙两同学想了一下都说知道了价格

聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?

2公司经理问你们准备怎样租车甲同学说我的方案是只租用45座的客车可是会有一辆客车空出30个座位乙同学说我的方案只租用60座客车正好坐满且比甲同学的方案少用两辆客车王老师在旁听了他们的谈话说从经济角度考虑还有别的方案吗?如果是你你该如何设计租车方案并说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程:

(1)

(2)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.

(1)求该抛物线的解析式;
(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.
(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】1探究如图直线ABBCAC两两相交交点分别为点ABCD在线段AB过点DDEBCAC于点E过点EEFABBC于点F.若ABC=40°DEF的度数

请将下面的解答过程补充完整并填空(理由或数学式)

DEBC∴∠DEF= .(  )

EFAB =∠ABC.(  )

∴∠DEF=∠ABC(等量代换)

∵∠ABC=40°∴∠DEF= °

2应用如图直线ABBCAC两两相交交点分别为点ABCD在线段AB的延长线上过点DDEBCAC于点E过点EEFABBC于点F.若ABC=60°DEF= °

查看答案和解析>>

科目: 来源: 题型:

【题目】 如图,ABC中,AB=ACBAC=90°,点D是直线AB上的一动点(不和AB重合),BECDE,交直线ACF.

1)点D在边AB上时,试探究线段BDABAF的数量关系,并证明你的结论;

2)点DAB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AB=CBABC=90°FAB延长线上一点,点EBC上,且AE=CF

1)求证:ABE≌△CBF

2)若CAE=30°,求ACF的度数.

查看答案和解析>>

同步练习册答案