科目: 来源: 题型:
【题目】如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.
![]()
(1)求线段BC的长;
(2)求线段MN的长;
(3)若C在线段AB延长线上,且满足AC﹣BC=b cm,M,N分别是线段AC,BC的中点,你能猜想MN的长度吗?请写出你的结论(不需要说明理由).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知一次函数y1=x+1的图象与y轴交于点A,一次函数y2=kx+b的图象经过点B(0,3),且分别与x轴及y1=x+1的图象交于点C,D,点D的横坐标为
.
(1)求k,b的值;
(2)当x_____时,y2>0;
(3)若在一次函数y1=x+1的图象上有一点E(
,n),将点E向右平移2个单位后,得对应点E',判断点E'是否在一次函数y2=kx+b的图象上.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);
(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;
(3)判断△ABC的形状.并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在长方形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.
![]()
设点P,Q同时出发,用t(s)表示移动的时间.
(发现) DQ=________cm,AP=________cm.(用含t的代数式表示)
(拓展)(1)如图①,当t=________s时,线段AQ与线段AP相等?
(2)如图②,点P,Q分别到达B,A后继续运动,点P到达点C后都停止运动.
当t为何值时,AQ=
CP?
(探究)若点P,Q分别到达点B,A后继续沿着A—B—C—D—A的方向运动,当点P与点Q第一次相遇时,请直接写出相遇点的位置.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径
的长为( ) ![]()
A.π
B.2π
C.4π
D.8π
查看答案和解析>>
科目: 来源: 题型:
【题目】实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升
cm.
(1)开始注水1分钟,丙的水位上升________cm;
(2)开始注入________分钟的水量后,乙的水位比甲高0.5 cm.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:把函数y=bx+a和函数y=ax+b(其中a,b是常数,且a≠0,b≠0)称为一对交换函数,其中一个函数是另一个函数的交换函数.比如,函数y=4x+1是函数y=x+4的交换函数,等等.
(1)直接写出函数y=2x+1的交换函数;_________________;并直接写出这对交换函数和x轴所围图形的面积为_____________________________;
(2)若一次函数y=ax+2a和其交换函数与x轴所围图形的面积为3,求a的值.
(3)如图,在平面直角坐标xOy中,矩形OABC中,点C(0,
),M、N分别是线段OC、AB的中点,将△ABD沿着折痕AD翻折,使点B的落点E恰好落在线段MN的中点,点F是线段BC的中点,连接EF,若一次函数
和
与线段EF始终都有交点,则m的取值范围为_____________________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,△AOB中,AB=BC=2,∠ABC=90°,点O是线段AC的中点,连接OB,将△AOB绕点A逆时针旋转α度得到△ANM,连接CM,点P是线段CM的中点,连接PN、PB.
(1)如图1,当α=180°时,直接写出线段PN和PB之间的位置关系和数量关系;
(2)如图2,当α=90°时,探究线段PN和PB之间的位置关系和数量关系,并给出完整的证明过程;
(3)如图3,直接写出当△AOB在绕点A逆时针旋转的过程中,线段PN的最大值和最小值.
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与直线y=
x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.![]()
(1)求抛物线的解析式;
(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.
(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF. ![]()
(1)求证:AB是⊙O的切线;
(2)若CF=4,DF=
,求⊙O的半径r及sinB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com