相关习题
 0  348194  348202  348208  348212  348218  348220  348224  348230  348232  348238  348244  348248  348250  348254  348260  348262  348268  348272  348274  348278  348280  348284  348286  348288  348289  348290  348292  348293  348294  348296  348298  348302  348304  348308  348310  348314  348320  348322  348328  348332  348334  348338  348344  348350  348352  348358  348362  348364  348370  348374  348380  348388  366461 

科目: 来源: 题型:

【题目】已知,如图,点D△ABC的边AB的中点,四边形BCED是平行四边形,

(1)求证:四边形ADCE是平行四边形;

(2)当△ABC满足什么条件时,平行四边形ADCE是矩形?

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,AB=AC,∠BAC=150°,点A到BC的距离为1,与AB重合的一条射线AP,从AB开始,以每秒15°的速度绕点A逆时针匀速旋转,到达AC后立即以相同的速度返回AB,到达后立即重复上述旋转过程,设AP与BC边的交点为M,旋转2019秒时,BM= , CM=

查看答案和解析>>

科目: 来源: 题型:

【题目】1)在如图所示的数轴上,把数﹣2 42.5表示出来,并用将它们连接起来;

(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t(秒).

请从A,B两题中任选一题作答.

A.当t=3时,求甲、乙两小球之间的距离.

B.用含t的代数式表示甲、乙两小球之间的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2 . 已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;② ;③当0<t≤5时, ;④当 秒时,△ABE∽△QBP;其中正确的结论是( )

A.①②③
B.②③
C.①③④
D.②④

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知矩形ABCD中,EAD上的一点,FAB上的一点,EF⊥EC,且EF=ECDE=4cm,矩形ABCD的周长为32cm,求AE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】计算

(1)9+(﹣7)+10+(﹣3)+(﹣9)

(2)12+(﹣14)+6+(﹣7)

(3)﹣

(4)﹣4.2+5.7+(﹣8.7)+4.2.

查看答案和解析>>

科目: 来源: 题型:

【题目】小刚在课外书中看到这样一道有理数的混合运算题:

计算:

她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题。

(1)前后两部分之间存在着什么关系?

(2)先计算哪步分比较简便?并请计算比较简便的那部分。

(3)利用(1)中的关系,直接写出另一部分的结果。

(4)根据以上分析,求出原式的结果。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,E是△ABC中BC边上的一点,且BE= BC;点D是AC上一点,且AD= AC,SABC=24,则SBEF﹣SADF=(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1=2CFABDEAB,求证:FGBC.

证明:CFABDEAB 已知

∴∠BED=90°BFC=90°

∴∠BED=BFC ( )

EDFC

∴∠1=BCF ( )

∵∠2=1 已知

∴∠2=BCF ( )

FGBC ( )

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCD中,∠ADC的平分线交AB于点E,∠ABC的平分线交CD于点F,求证:四边形EBFD是平行四边形.

查看答案和解析>>

同步练习册答案