相关习题
 0  348363  348371  348377  348381  348387  348389  348393  348399  348401  348407  348413  348417  348419  348423  348429  348431  348437  348441  348443  348447  348449  348453  348455  348457  348458  348459  348461  348462  348463  348465  348467  348471  348473  348477  348479  348483  348489  348491  348497  348501  348503  348507  348513  348519  348521  348527  348531  348533  348539  348543  348549  348557  366461 

科目: 来源: 题型:

【题目】△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,则满足下列条件但不是直角三角形的是( )

A. ∠A=∠B-∠C B. ∠A:∠B:∠C=1:3:4 C. a:b:c=1::3 D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是2017年杭州市某月2408时至2507时的空气质量指数统计图(空气质量指数AQI的值在不同的区间,就代表了不同的空气质量水平.比如0~50之间,代表“良好”,对应的颜色为绿色;51~100之间,代表“中等”,对应的颜色为黄色;101~150之间,代表“对敏感人群不健康”,对应的颜色为橙色,等等),则根据统计图得出的下列判断,正确的是(  )

A. 在这个24小时中,AQI的值超过良好限值时段是2408时至2412

B. 在这个24小时中,AQI对应的颜色为黄色的时段持续了20小时以上

C. 在这个24小时中,AQI的最大值和最小值的差为77

D. 建议中老年朋友在2506时至07时进行晨练

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABCD是矩形纸片,翻折BD,使ADBC边与对角线AC重叠,且顶点BD恰好落在同一点O上,折痕分别是CEAF,则等于( )

A. B. 2 C. 1.5 D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示表示王勇同学骑自行车离家的距离与时间之间的关系,王勇9点离开家,15点回家,请结合图象,回答下列问题:

到达离家最远的地方是什么时间?离家多远?

他一共休息了几次?休息时间最长的一次是多长时间?

在哪些时间段内,他骑车的速度最快?最快速度是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据

摸球的次数

100

150

200

500

800

1000

摸到白球的次数

58

96

116

295

484

601

摸到白球的频率

0.58

0.64

0.58

0.59

0.605

0.601

(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).

(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是

(3)试估算口袋中黑、白两种颜色的球有多少只.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),直线BC经过点B(﹣8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转角度α得到四边形OA′B′C′,此时边OA′与边BC交于点P,边B′C′与BC的延长线交于点Q,连接AP.

(1)四边形OABC的形状是

(2)在旋转过程中,当PAO=POA,求P点坐标.

(3)在旋转过程中,当P为线段BQ中点时,连接OQ,求OPQ的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】己知一元二次方程x2﹣3x+m﹣1=0.
(1)若方程有两个不相等的实数根,求实数m的取值范围;
(2)若方程有两个相等的实数根,求此时方程的根.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知有理数ab在数轴上的对应点如图所示.

(1)已知a=–2.3,b=0.4,计算|a+b|–|a|–|1–b|的值;

(2)已知有理数ab,计算|a+b|–|a|–|1–b|的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知如图,直线EFAB、CD分别相交于点E、F.

(1)如图1,若∠1=120°,2=60°,求证ABCD;

(2)在(1)的情况下,若点P是平面内的一个动点,连结PE、PF,探索∠EPF、PEB、PFD三个角之间的关系;

①当点P在图2的位置时,可得∠EPF=PEB+∠PFD;

请阅读下面的解答过程,并填空(理由或数学式)

解:如图2,过点PMNAB,

则∠EPM=PEB_____

ABCD(已知),MNAB(作图)

MNCD_____

∴∠MPF=PFD

∴∠_____+∠_____=PEB+∠PFD(等式的性质)

即∠EPF=PEB+∠PFD

②当点P在图3的位置时,∠EPF、PEB、PFD三个角之间有何关系并证明.

③当点P在图4的位置时,请直接写出∠EPF、PEB、PFD三个角之间的关系:_____

查看答案和解析>>

科目: 来源: 题型:

【题目】用适当的方法解一元二次方程
(1)x2+3x+1=0
(2)(x﹣1)(x+2)=2(x+2)

查看答案和解析>>

同步练习册答案