相关习题
 0  348643  348651  348657  348661  348667  348669  348673  348679  348681  348687  348693  348697  348699  348703  348709  348711  348717  348721  348723  348727  348729  348733  348735  348737  348738  348739  348741  348742  348743  348745  348747  348751  348753  348757  348759  348763  348769  348771  348777  348781  348783  348787  348793  348799  348801  348807  348811  348813  348819  348823  348829  348837  366461 

科目: 来源: 题型:

【题目】阅读下面材料:
如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将(2)、(3)、(4)补充完整:
(1)将不等式按条件进行转化:
(2)构造函数,画出图象
设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
双曲线y4= 如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(3)确定两个函数图象公共点的横坐标,观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
(4)借助图象,写出解集
结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集

查看答案和解析>>

科目: 来源: 题型:

【题目】计算

(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)

(2)5+(﹣ )﹣7﹣(﹣2.5)

(3)(﹣)×(﹣)+(﹣)×(+

(4)

(5)8﹣23÷(﹣4)3+

(6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3AD=4,则ED的长为

A B3 C1 D

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是_____(填写符合要求的序号)

(1)两个有理数的和为负数时,这两个数都是负数;

(2)如果两个数的差是正数,那么这两个数都是正数;

(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;

(4)数轴上到原点的距离为3的点表示的数是3或﹣3;

(5)0乘以任何数都是0.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,为美化校园环境,某校计划在一块长为100米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米﹒

(1)用含a的式子表示花圃的面积;

(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;

(3)已知某园林公司修建通道的单价是50/2,修建花圃的造价y(元)与花圃的修建面积Sm2)之间的函数关系如图2所示,并且通道宽a(米)的值能使关于x的方程x2-ax+25a-150有两个相等的实根,并要求修建的通道的宽度不少于5米且不超过12米,如果学校决定由该公司承建此项目,请求出修建的通道和花圃的造价和为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12 m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3 m2瓷砖.

(1)求每个宿舍需要铺瓷砖的地板面积.

(2)现该学校有20个宿舍的地板和36 m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求2天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要再安排多少名二级技工才能按时完成任务

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是⊙O的切线;
(2)若AB=4+ ,BC=2 ,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,两直线AB,CD相交于点O,已知OE平分BOD,且AOC:AOD=3:7,

1DOE的度数;

2若OFOE,求COF的度数

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线AB:y=5x﹣5与x轴交于点A,与y轴交于点B,点C与点B关于原点O对称,抛物线y=ax2+bx+c的对称轴为直线x=3且过点A和C.

(1)求点A和点C的坐标;
(2)求抛物线y=ax2+bx+c的解析式;
(3)若抛物线y=ax2+bx+c的顶点为D,且在x轴上存在点P使得△DAP的面积为6,直接写出满足条件的点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线ABCD相交于点OOFOD分别是AOEBOE的平分线.

(1)写出DOE的补角;

(2)BOE62°,求AODEOF的度数;

(3)试问射线ODOF之间有什么特殊的位置关系?为什么?

查看答案和解析>>

同步练习册答案