相关习题
 0  349058  349066  349072  349076  349082  349084  349088  349094  349096  349102  349108  349112  349114  349118  349124  349126  349132  349136  349138  349142  349144  349148  349150  349152  349153  349154  349156  349157  349158  349160  349162  349166  349168  349172  349174  349178  349184  349186  349192  349196  349198  349202  349208  349214  349216  349222  349226  349228  349234  349238  349244  349252  366461 

科目: 来源: 题型:

【题目】如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为和谐数如(8=321216=5232,即816均为和谐数),在不超过2017的正整数中,所有的和谐数之和为(  )

A. 255054 B. 255064 C. 250554 D. 255024

查看答案和解析>>

科目: 来源: 题型:

【题目】下列因式分解正确的是( )

A. x2y2-z2=x2y+z)(y-z B. -x2y+4xy-5y=-yx2+4x+5

C. x+22-9=x+5)(x-1 D. 9-12a+4a2=-3-2a2

【答案】C

【解析】解析:选项A.用平方差公式法,应为x2y2-z2=xy+z·xy-z),故本选项错误.

选项B.用提公因式法,应为-x2y+ 4xy-5y=- yx2- 4x+5),故本选项错误.

选项C.用平方差公式法,(x+22-9=x+2+3)(x+2-3=x+5)(x-1),故本选项正确.

选项D.用完全平方公式法,应为9-12a+4a2=3-2a2,故本选项错误.

故选C.

点睛:(1)完全平方公式: .

(2)平方差公式:(a+b)(a-b)= .

(3)常用等价变形:

,

,

.

型】单选题
束】
10

【题目】已知abc分别是ABC的三边长且满足2a4+2b4+c4=2a2c2+2b2c2ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,O是直线l上一点,在点O的正上方有一点A,满足OA=3,点A,B位于直线l的同侧,且点B到直线l的距离为5,线段AB=,一动点C在直线l上移动.

(1)当点C位于点O左侧时,且OC=4,直线l上是否存在一点P,使得△ACP为等腰三角形?若存在,请求出OP的长;若不存在,请说明理由.

(2)连结BC,在点C移动的过程中,是否存在一点C,使得AC+BC的值最小?若存在,请求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在△ABC中,∠C=2∠B,D是BC边上的一点,且AD⊥AB,E是BD的中点,连结AE.

求证:(1)∠AEC=∠C;

(2)BD=2AC.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC

(1)如图.当COD在∠AOB的内部时

AOC=39°40′,求DOE的度数;

AOC=α,求DOE的度数(用含α的代数式表示),

(2)如图,当COD在AOB的外部时,

请直接写出AOC与DOE的度数之间的关系;

AOC内部有一条射线OF,满足∠AOC+2∠BOE=4∠AOF,写出AOF与DOE的度数之间的关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点O为原点,已知数轴上点A和点B所表示的数分别为﹣10和6,动点P从点A出发,以每秒6个单位长度的速度沿数轴正方向匀速运动,同时动点Q从点B出发,以每秒3个单位的速度沿数轴负方向匀速运动,设运动时间为t(t>0)秒

(1)当t=2时,求AP的中点C所对应的数;

(2)当PQ=OA时,求点Q所对应的数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是(  )

A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.当a= 时,△ABD是等腰直角三角形

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,延长△ABC的各边,使得BF=AC,AE=CD=AB,连结DE,EF,FD,得到△DEF为等边三角形.

求证:(1)△AEF≌△CDE;

(2)△ABC为等边三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知二次函数y1=ax2+bx过(﹣2,4),(﹣4,4)两点.
(1)求二次函数y1的解析式;
(2)将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2 , 直线y=m(m>0)交y2于M、N两点,求线段MN的长度(用含m的代数式表示);
(3)在(2)的条件下,y1、y2交于A、B两点,如果直线y=m与y1、y2的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与y1、y2的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.

查看答案和解析>>

同步练习册答案