科目: 来源: 题型:
【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.
(1)榕树和香樟树的单价各是多少?
(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算该校本次购买榕树和香樟树共有哪几种方案.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:
①AD∥BC;②∠BDC=
∠BAC;③∠ADC=90°-∠ABD; ④BD平分∠ADC.
其中正确的结论有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC由△A′B′C′绕O点旋转180°而得到,则下列结论不成立的是( )![]()
A.点A与点A′是对应点
B.BO=B′O
C.∠ACB=∠C′A′B′
D.AB∥A′B′
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A、C、B′三点共线,那么旋转角度的大小为( )![]()
A.45°
B.90°
C.120°
D.135°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=4,点P从点C出发沿CA以每秒1个单位长度的速度向终点A运动:同时,点Q从点C出发沿CB﹣BA运动,点Q在CB上的速度为每秒2个单位长度,在BA上的速度为每秒
个单位长度,当点P到达终点A时,点Q随之停止运动.以CP、CQ为邻边作CPMQ,设CPMQ与△ABC重叠部分图形的面积为y(平方单位),点P的运动时间为x(秒).![]()
(1)当点M落在AB上时,求x的值.
(2)当点Q在边CB上运动时,求y与x的函数关系式.
(3)在P、Q两点整个运动过程中,当CPMQ与△ABC重叠部分图形不是四边形时,求x的取值范围.
(4)以B、C、M为顶点的三角形是等腰三角形时,直接写出CP的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点0是等边△ABC内一点,∠AOB=110°,∠BOC=α,OC=CD,
且∠DOC=60°连接OD.
(1)求证:△COD是等边三角形
(2)当α=150°时,试判断△AOD的形状,并说明理由
(3)探究:当α为多少度时,△AOD是等腰三角形
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度数.
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com