相关习题
 0  349521  349529  349535  349539  349545  349547  349551  349557  349559  349565  349571  349575  349577  349581  349587  349589  349595  349599  349601  349605  349607  349611  349613  349615  349616  349617  349619  349620  349621  349623  349625  349629  349631  349635  349637  349641  349647  349649  349655  349659  349661  349665  349671  349677  349679  349685  349689  349691  349697  349701  349707  349715  366461 

科目: 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点关于的对称点,反比例函数的图像经过点.

)证明四边形为菱形.

)求此反比例函数的解析式.

)已知点的图像上,点轴上,且点组成四边形是平行四边形,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是(
A.极差是6
B.众数是10
C.平均数是9.5
D.方差是16

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2 x+n同时经过A(0,3)、B(4,0).

(1)求m,n的值.
(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.
(3)在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)

(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

查看答案和解析>>

科目: 来源: 题型:

【题目】在矩形ABCD中,边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(如图1).

(1)如图2,设折痕与边BC交于点O,连接,OP、OA.已知△OCP与△PDA的面积比为1:4,求边AB的长;
(2)动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN、CA,交于点F,过点M作ME⊥BP于点E.
①在图1中画出图形;
②在△OCP与△PDA的面积比为1:4不变的情况下,试问动点M、N在移动的过程中,线段EF的长度是否发生变化?请你说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.

(1)求这100个样本数据的平均数、众数和中位数;

(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?

查看答案和解析>>

科目: 来源: 题型:

【题目】3分)在同一平面直角坐标系中,函数y=ax2+bxy=bx+a的图象可能是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程x2+2x+ =0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2+2x+ 的图象向下平移9个单位,求平移后的图象的表达式;
(3)在(2)的条件下,平移后的二次函数的图象与x轴交于点A,B(点A在点B左侧),直线y=kx+b(k>0)过点B,且与抛物线的另一个交点为C,直线BC上方的抛物线与线段BC组成新的图象,当此新图象的最小值大于﹣5时,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案