相关习题
 0  349611  349619  349625  349629  349635  349637  349641  349647  349649  349655  349661  349665  349667  349671  349677  349679  349685  349689  349691  349695  349697  349701  349703  349705  349706  349707  349709  349710  349711  349713  349715  349719  349721  349725  349727  349731  349737  349739  349745  349749  349751  349755  349761  349767  349769  349775  349779  349781  349787  349791  349797  349805  366461 

科目: 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是( )个
①c>0;
②若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2
③2a﹣b=0;
<0;
⑤4a﹣2b+c>0.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,点D是弧 的中点,∠ABC=52°,则∠DAB等于(

A.58°
B.61°
C.72°
D.64°

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线y= x﹣ 分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交 于点F(F与B、C不重合).问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:点D是△ABC所在平面内一点,连接ADCD

(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC

(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;

(3)如图3,在 (2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】△ABC在平面直角坐标系中的位置如图所示.

(1)作出△ABC关于y轴对称的△ABlCl

(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为______

查看答案和解析>>

科目: 来源: 题型:

【题目】荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)求桂味和糯米糍的售价分别是每千克多少元;
(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.

查看答案和解析>>

科目: 来源: 题型:

【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC是等边三角形,点D是线段AC上的一动点,EBC的延长线上,且BDDE

(1)如图,若点D为线段AC的中点,求证:ADCE

(2)如图,若点D为线段AC上任意一点,求证:ADCE.

查看答案和解析>>

科目: 来源: 题型:

【题目】小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?

查看答案和解析>>

同步练习册答案