相关习题
 0  349988  349996  350002  350006  350012  350014  350018  350024  350026  350032  350038  350042  350044  350048  350054  350056  350062  350066  350068  350072  350074  350078  350080  350082  350083  350084  350086  350087  350088  350090  350092  350096  350098  350102  350104  350108  350114  350116  350122  350126  350128  350132  350138  350144  350146  350152  350156  350158  350164  350168  350174  350182  366461 

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.
(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1. ①求点B的坐标及k的值;
②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于

(2)直线y=kx+4(k≠0)与x轴交于点E(x0 , 0),若﹣2<x0<﹣1,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一只不透明的布袋中装有红球、黄球各若干个,这些球除颜色外都相同,充分摇匀.
(1)若布袋中有3个红球,1个黄球.从布袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程);
(2)若布袋中有3个红球,x个黄球. 请写出一个x的值 , 使得事件“从布袋中一次摸出4个球,都是黄球”是不可能的事件;
(3)若布袋中有3个红球,4个黄球. 我们知道:“从袋中一次摸出4个球,至少有一个黄球”为必然事件.
请你仿照这个表述,设计一个必然事件:

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.

“通话时长”
(x分钟)

0<x≤3

3<x≤6

6<x≤9

9<x≤12

12<x≤15

15<x≤18

次数

36

a

8

12

8

12

根据表、图提供的信息,解答下面的问题:
(1)a= , 样本容量是
(2)求样本中“通话时长”不超过9分钟的频率:
(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.
(1)求证:∠1=∠2;
(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】
(1)解方程: =0;
(2)解不等式:2+ ≤x,并将它的解集在数轴上表示出来.

查看答案和解析>>

科目: 来源: 题型:

【题目】
(1)计算:( 1+ cos45°﹣
(2)化简:(x+ )÷

查看答案和解析>>

科目: 来源: 题型:

【题目】一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a=(小时).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是( )
A.﹣5≤s≤﹣
B.﹣6<s≤﹣
C.﹣6≤s≤﹣
D.﹣7<s≤﹣

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q
(1)若BP= ,求∠BAP的度数;
(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;
(3)以PQ为直径作⊙M. ①判断FC和⊙M的位置关系,并说明理由;
②当直线BD与⊙M相切时,直接写出PC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.

(1)求二次函数的表达式;
(2)长度为2 的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1 , 求四边形PQQ1P1面积的最大值;
(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足SAOF=SAOM?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案