科目: 来源: 题型:
【题目】如图1,在四边形ABCD中,AD∥BC,∠B=∠C=60°,P、Q同时从B出发,以每秒1单位长度分别沿B﹣A﹣D﹣C和B﹣C﹣D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平方单位),S与t的函数图象如图2所示,则下列结论错误的个数( )
①当t=4秒时,S=4
②AD=4
③当4≤t≤8时,S=2
t ④当t=9秒时,BP平分四边形ABCD的面积.![]()
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个ACC1D1 , 使∠D1AC=60°;连接AC1 , 再以AC1为边作第三个菱形AC1C2D2 , 使∠D2AC1=60°;…,按此规律所作的第2017个菱形的边长为( ) ![]()
A.(
)2016
B.(
)2016
C.22017
D.(
)2017
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为( ) ![]()
A.2
B.![]()
C.1
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.![]()
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为
,问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=
,BP=
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.
(1)求甲、乙两种糖果的价格;
(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?
查看答案和解析>>
科目: 来源: 题型:
【题目】在ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF. ![]()
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
查看答案和解析>>
科目: 来源: 题型:
【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】宽与长的比是
(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是( ) ![]()
A.矩形ABFE
B.矩形EFCD
C.矩形EFGH
D.矩形DCGH
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com