相关习题
 0  350526  350534  350540  350544  350550  350552  350556  350562  350564  350570  350576  350580  350582  350586  350592  350594  350600  350604  350606  350610  350612  350616  350618  350620  350621  350622  350624  350625  350626  350628  350630  350634  350636  350640  350642  350646  350652  350654  350660  350664  350666  350670  350676  350682  350684  350690  350694  350696  350702  350706  350712  350720  366461 

科目: 来源: 题型:

【题目】阅读材料:

小明在学习二次根式的化简后,遇到了这样一个需要化简的式子:.该如何化简呢?思考后,他发现3+2=1+2+(2=(1+2.于是==1+.善于思考的小明继续深入探索;当a+b=(m+n2时(其中a,b,m,n均为正整数),则a+b=m2+2mn+2n2.此时,a=m2+2n2,b=2mn,于是,=m+n.请你仿照小明的方法探索并解决下列问题:

(1)设a,b,m,n均为正整数且=m+n,用含m,n的式子分别表示a,b时,结果是a=   ,b=   

(2)利用(1)中的结论,选择一组正整数填空:=   +   

(3)化简:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则能够正确反映y与x之间的函数关系的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,Rt△ABO中,∠OAB=Rt∠,点A在x轴的正半轴,点B在第一象限,C,D分别是BO,BA的中点,点E在CD的延长线上.若函数y1= (x>0)的图象经过B,E,函数y2= (x>0)的图象过点C,且△BCE的面积为1,则k2的值为(
A.
B.
C.3
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在风速为25 km/h的条件下,一架飞机顺风从A机场飞到B机场要用5.6h,它逆风飞行同样的航线要用6h.求:

(1)无风时这架飞机在这一航线的平均航速;

(2)两机场之间的航程是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料并解答下列问题.

你知道吗?一些代数恒等式可以用平面图形的面积来表示,例如(2ab)(ab)2a23abb2就可以用图甲中的①或②的面积表示.

(1)请写出图乙所表示的代数恒等式;

(2)画出一个几何图形,使它的面积能表示(ab)(a3b)a24ab3b2

(3)请仿照上述式子另写一个含有ab的代数恒等式,并画出与之对应的几何图形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y= (x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.

(1)求k的值及点E的坐标;
(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:在长度为1个单位的小正方形组成的网格中,点A、B、C在小正方形的顶点上.

(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;

(2)△ABC的面积为________;

(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为________个单位长度.(在图形中标出点P)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,若BE=1,CE=2,则折痕FG的长度为(
A.
B.2
C.3
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】1)如图1,在AB直线一侧CD两点,在AB上找一点P,使CDP三点组成的三角形的周长最短,找出此点并说明理由.

2)如图2,在AOB内部有一点P,是否在OAOB上分别存在点EF,使得EFP三点组成的三角形的周长最短,找出EF两点,并说明理由.

3)如图3,在AOB内部有两点MN,是否在OAOB上分别存在点EF,使得EFMN,四点组成的四边形的周长最短,找出EF两点,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,直角坐标系中有一矩形OABC,其中O是坐标原点,点A,C分别在x轴和y轴上,点B的坐标为(3,4),直线y= x交AB于点D,点P是直线y= x位于第一象限上的一点,连接PA,以PA为半径作⊙P,
(1)连接AC,当点P落在AC上时,求PA的长;
(2)当⊙P经过点O时,求证:△PAD是等腰三角形;
(3)设点P的横坐标为m, ①在点P移动的过程中,当⊙P与矩形OABC某一边的交点恰为该边的中点时,求所有满足要求的m值;
②如图2,记⊙P与直线y= x的两个交点分别为E,F(点E在点P左下方),当DE,DF满足 <3时,求m的取值范围.(请直接写出答案)

查看答案和解析>>

同步练习册答案