相关习题
 0  350599  350607  350613  350617  350623  350625  350629  350635  350637  350643  350649  350653  350655  350659  350665  350667  350673  350677  350679  350683  350685  350689  350691  350693  350694  350695  350697  350698  350699  350701  350703  350707  350709  350713  350715  350719  350725  350727  350733  350737  350739  350743  350749  350755  350757  350763  350767  350769  350775  350779  350785  350793  366461 

科目: 来源: 题型:

【题目】已知:如图,ABCD,∠B70°,∠BCE20°,∠CEF130°,请判断ABEF的位置关系,并说明理由.

解:   ,理由如下:

ABCD

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,分别交BC,AD于E,F两点,交BA的延长于G,判断弧EF和弧FG是否相等,并说明理由。

查看答案和解析>>

科目: 来源: 题型:

【题目】计算下列各题:

1)(﹣12018+32﹣(π3.140

2)(x+32x2

3)(x+2)(3xy)﹣3xx+y

4)(2x+y+1)(2x+y1

查看答案和解析>>

科目: 来源: 题型:

【题目】如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”。如图,在三角形ABC中,∠C=90°,较短的一条直角边BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中线”的长。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,已知,点边上的任意一动点,点与点关于直线对称,直线与直线相交于点

(1)求边上的高;

(2)当为何值时,△与△重叠部分的面积最大,并求出最大值;

3)连接,当为直角三角形时,求的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.

(1)∠CBD=   

(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=   

(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,A、B、C为⊙O上的三个点,⊙O的直径为4cm,∠ACB=45°,求AB的长

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读与思考:

整式乘法与因式分解是方向相反的变形,由

可得

利用这个式子可以将某些二次项系数是1的二次三项式分解因式.

例如:将式子分解因式.

这个式子的常数项,一次项系

所以

解:

上述分解因式的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).

请仿照上面的方法,解答下列问题:

(1)分解因式:=___________________;

(2)若可分解为两个一次因式的积,则整数P的所有可能值是________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知平面内一点P,若点P到两条相交直线l1和l2的距离都相等,且距离均为h(h>0),则称点P叫做直线l1和l2的“h距离点”. 例如图1所示,直线l1和l2互相垂直,交于O点,平面内一点P到两直线的距离都是2,则称点P叫做直线l1和l2的“2距离点”.

(1)若直线l1和l2互相垂直,且交于O点,平面内一点P是直线l1和l2的“7距离点”,直接写出OP的长度为

(2)如图2所示,直线l1和l2相交于点O,夹角为60°,已知平面内一点P是直线l1和l2的“3距离点”,求出OP的长度;

(3)已知三条直线两两相交后形成一个等边三角形,如图3所示,在等边△ABC中,点P是三角形内部一点,且点P分别是等边△ABC三边所在直线的“距离点”,请你直接写出△ABC的面积是 .

查看答案和解析>>

科目: 来源: 题型:

【题目】小明四等分弧AB,他的作法如下:
①连接AB(如图);作AB的垂直平分线CD交弧AB于点M,交AB于点T;

②分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。你认为小明的作法是否正确: , 理由是

查看答案和解析>>

同步练习册答案