相关习题
 0  350806  350814  350820  350824  350830  350832  350836  350842  350844  350850  350856  350860  350862  350866  350872  350874  350880  350884  350886  350890  350892  350896  350898  350900  350901  350902  350904  350905  350906  350908  350910  350914  350916  350920  350922  350926  350932  350934  350940  350944  350946  350950  350956  350962  350964  350970  350974  350976  350982  350986  350992  351000  366461 

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y , 线段BP的长度记作y , y和y关于时间t的函数变化情况如图所示.

(1)由图2可知,点M的运动速度是每秒cm,当t为何值时,四边形PQCM是平行四边形?在图2中反映这一情况的点是
(2)设四边形PQCM的面积为ycm2 , 求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形PQCM= S△ABC?若存在,求出t的值;若不存在,说明理由;
(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线ABCD相交于点OOMAB

1)∠AOC的邻补角为    (写出一个即可);

2)若∠1=∠2,判断ONCD的位置关系,并说明理由;

3)若∠1=BOC,求∠MOD的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①,将两个边长为1的小正方形分别沿对角线剪开,拼成正方形ABCD

1)正方形ABCD的面积为    ,边长为    ,对角线BD=    

2)求证:

3)如图②,将正方形ABCD放在数轴上,使点B与原点O重合,边AB落在x轴的负半轴上,则点A所表示的数为    ,若点E所表示的数为整数,则点E所表示的数为    .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知ABCDCEAB于点F,若∠E=20°C=45°,则∠A的度数为(  )

A. B. 15° C. 25° D. 35°

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),直接写出线段AD与NE的数量关系为

(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),判断△ACN是什么特殊三角形并说明理由.

(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.若AC=3 ,AD=1,则四边形ACEN的面积为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,M,N分别为BE,CD的中点.

(1)求证:△ABE≌ACD;

(2)判断△AMN的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:

①∠ABC=ADC;

AC与BD相互平分;

AC,BD分别平分四边形ABCD的两组对角;

四边形ABCD的面积S=ACBD.

正确的是 (填写所有正确结论的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,现已知a1=a2a1的差倒数,a3a2的差倒数,a4a3的差倒数,

(1)a2a3a4的值;

(2)根据(1)的计算结果,请猜想并写出a2016a2017a2018的值;

(3)计算:a33+a66+a99+…+a9999的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:
探究:
(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当a=°时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)
(4)拓展:如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是 , 并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)

查看答案和解析>>

科目: 来源: 题型:

【题目】小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发匀速前行,且途中休息一段时间后继续以原速前行.家到公园的距离为2000m,如图是小明和爸爸所走的路程S(m)与步行时间t(min)的函数图象.

(1)直接写出BC段图象所对应的函数关系式(不用写出t的取值范围).
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早18分钟到达公园,则小明在步行过程中停留的时间需减少分钟.

查看答案和解析>>

同步练习册答案