精英家教网 > 初中数学 > 题目详情

【题目】如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:
探究:
(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当a=°时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)
(4)拓展:如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是 , 并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)

【答案】
(1) +1;60°
(2)解:设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.

∵O′P=R,

∴R= R+1,

∴R=4+2


(3)
(4)解:如图5中,当半圆与射线AB相切时,之后开始出现两个交点,此时α=90°;当N′落在AB上时,为半圆与AB有两个交点的最后时刻,此时∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,当半圆弧线与射线AB有两个交点时,α的取值范围是:90°<α≤120°故答案为90°<α≤120°;当N′落在AB上时,阴影部分面积最大,所以S═ ? m? m= m2
【解析】解:(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE是矩形,EF=AM=1.想办法求出O′E的长即可.

在Rt△MFO′中,∵∠MO F=30°,MO′=2,

∴O′F=O′Mcos30°= ,O′E= +1,

∴点O′到AB的距离为 +1.

如图2中,设切点为F,连接O′F,作O′E⊥OA于E,则四边形O′EAF是矩形,

∴AE=O′F=2,

∵AM=1,

∴EM=1,

在Rt△O′EM中,sinα= =

∴α=60°

故答案为 +1,60°.(3)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.

在Rt△O′QM中,O′Q=Rcosα,QP=m,

∵O′P=R,

∴Rcosα+m=R,

∴cosα=

故答案为

(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE是矩形,EF=AM=1.如图2中,设切点为F,连接O′F,作O′E⊥OA于E,则四边形O′EAF是矩形,在Rt△O′EM中,由sinα= = ,推出α=60°.(2)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.列出方程即可解决问题.(3)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.列出方程即可解决问题、(4)当半圆与射线AB相切时,之后开始出现两个交点,此时α=90°;当N′落在AB上时,为半圆与AB有两个交点的最后时刻,此时∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,当半圆弧线与射线AB有两个交点时,α的取值范围是:90°<α≤120°.当N′落在AB上时,阴影部分面积最大,求出此时的面积即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图ABC,AB=AC,BAC=90°,1=2,CEBDBD的延长线于点E.求证:BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设边长为3的正方形的对角线长为a.下列关于a的四种说法: ①a是无理数;
②a可以用数轴上的一个点来表示;
③3<a<4;
④a是18的算术平方根.
其中,所有正确说法的序号是(
A.①④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画出函数y=2x+4的图像,并结合图像解决下列问题:

(1)写出方程2x+4=0的解;

(2)当﹣4≤y时,求相应x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.

投资量x(万元)

2

种植树木利润y1(万元)

4

种植花卉利润y2(万元)

2


(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCDCEAB于点F,若∠E=20°C=45°,则∠A的度数为(  )

A. B. 15° C. 25° D. 35°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形OABC中,O为平面直角坐标系的原点,点A,点C分别在x轴,y轴上,点B坐标为(46),点P从点O出发,以每秒2个单位长度的速度沿OCB方向运动,到点B停止.设点P运动的时间为t(秒).

1)点A的坐标为    

2)当t=1秒时,点P的坐标    

3)当点POC上运动,请直接写出点P的坐标(用含有t的式子表示);

4)在移动过程中,当点Py轴的距离为1个单位长度时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办迎省运学生书画展览,现要在长方形展厅中划出个形状、大小完全一样的小长方形(中阴影部分)区城摆放展览作品.

1)如图1,若大长方形的长和宽分別为米和米,求小长方形的长和宽;

2)如图2,若大长方形的长和宽分别为,求出一个小长方形与一个大长方形周长的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在等边三角形ABC中.DAB边上的动点,以CD为一边,向上作等边三角形EDC.连接AE.

(l)求证:DBCEAC

(2)试说明AEBC的理由.

(3)如图②,当图①中动点D运动到边BA的延长线上时,所作仍为等边三角形,猜想是否仍有AEBC?若成立请证明.

查看答案和解析>>

同步练习册答案