【题目】如图①,在等边三角形ABC中.D是AB边上的动点,以CD为一边,向上作等边三角形EDC.连接AE.
(l)求证:△DBC≌△EAC
(2)试说明AE∥BC的理由.
(3)如图②,当图①中动点D运动到边BA的延长线上时,所作仍为等边三角形,猜想是否仍有AE∥BC?若成立请证明.
【答案】(1)见解析;(2)见解析;(3)仍有AE∥BC,理由见解析
【解析】试题分析:(1)根据△ABC与△EDC是等边三角形,利用其三边相等和三角相等的关系,求证∠BCD=∠ACE.然后即可证明结论;
(2)根据ACE≌△BCD,可得∠ABC=∠CAE=60°,利用等量代换求证∠CAE=∠ACB即可.
(3)证明△DBC≌△EAC可推出∠EAC=∠ACB,由此可证.
试题解析:(1)∵∠ACB=60, ∠DCE=60,
∴∠BCD=60-∠ACD, ∠ACE=60-∠ACD,
即∠BCD=∠ACE,
在△DBC和△EAC中,
,
∴△DBC≌△EAC(SAS);
(2) ∵△DBC≌△EAC,
∴∠EAC=∠B=60,
又∵∠ACB=60,
∴∠EAC=∠ACB,
∴AE∥BC;
(3)仍有AE∥BC,
∵△ABC,△EDC都为等边三角形,
∴BC=AC, DC=CE, ∠BCA=∠DCE=60,
∴∠BCA+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△DBC和△EAC中,
,
∴△DBC和△EAC(SAS),
∴∠EAC=∠B=60,
又∵∠ACB=60,
∴∠EAC=∠ACB,
∴AE∥BC.
科目:初中数学 来源: 题型:
【题目】甲、乙两辆汽车分别从A、B两城同时沿高速公路驶向C城.已知A、C两城的路程为500千米,B、C两城的路程为450千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城,求两车的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备组织部分学生到当地社会实践基地参加活动,陈老师从社会实践基地带回来了两条信息:
信息一:按原来报名参加的人数,共需要交费用320元.现在报名参加的人数增加到原来人数的2倍,可以享受优惠,此时只需交费用480元;
信息二:享受优惠后,参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,现在报名参加的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某游泳池长48米,小方和小杨进行游泳比赛,从同一处(A点)出发,小方平均速度为3米/秒,小杨为3.1米/秒.但小杨一心想快,不看方向沿斜线(AC方向)游,而小方直游(AB方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com