科目: 来源: 题型:
【题目】已知如图,在△ABC中,AB=AC,点D是线段BC上一个动点,以AD为腰在线段AD的右侧作△ADE,且AD=AE。
(1)如图①,当∠BAC=∠DAE=90°时,试判断线段BD和CE有什么关系,并给出证明:
(2)在(1)的条件下,若BC=4.试判断四边形ADCE的面积是否发生变化,若不变,求出四边形ADCE的面积;若变化,请说明理由;
(3)如图②,若∠BAC=∠DAE=120°,BC=4,试探索△DCE的面积是否存在最大值,若存在,求出此时∠DEC的度数,若不存在,请说明理由。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,A、B两地相距50千米,阿杜于某日下午1时骑自行车从A地出发驶往B地,浩浩也于同日下午骑摩托车按路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示阿杜和浩浩所行驶的路程S和时间t的关系:
根据图象回答下列问题:
(1)阿杜和浩浩哪一个出发的更早?早出发多长时间?
(2)浩浩骑摩托车的速度和阿杜骑自行车在全程的平均速度分别是多少?
(3)请你根据图象上的数据,求出浩浩出发用多长时间就追上阿杜?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).![]()
(1)求抛物线的解析式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;
(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到
.
![]()
(1)写出由图2所表示的数学等式:________.
![]()
(2)写出由图3所表示的数学等式:________.
![]()
(3)已知实数
,
,
满足
,
.
①求
的值.
②求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.![]()
(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=
图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若
=
,则b的值是 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AD是∠BAC平分线,点E在AB上,且AE=AC,EF∥BC交AC于点F,AD与CE交于点G,与EF交于点H.
(1)证明:AD垂直平分CE;
(2)若∠BCE=40°,求∠EHD的度数.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com